Refine Your Search

Search Results

Author:
Viewing 1 to 4 of 4
Journal Article

Axial Turbine Turbocharger for Charging a Lean-Burn Gasoline Engine

2022-03-29
2022-01-0377
A single-stage turbocharger turbine is developed with the objective of enabling a gasoline spark-ignition engine to operate under lean-burn conditions with an air-to-fuel ratio of λ=2 in the range of the Worldwide Harmonized Light-Duty Vehicles Test Cycle. For this purpose, extensive 1-D engine simulations are performed using a combination of a simple compressor and simple turbine model as well as a combination of the stock compressor and a simple turbine model. The results show that an isentropic turbine efficiency of more than 70% over a wide operating range is required for the desired engine operation - especially with regard to the low-end-torque. Based on the crank-angle-resolved engine simulation data, turbine requirements are determined. Their evaluation shows that an axial turbine is a reasonable alternative to conventional radial turbines for this application. Next, a preliminary axial turbine is designed using 1-D/2-D design approaches.
Technical Paper

Potentials of Variable Cross Section Compressor Regarding Surge Line and Compressor Efficiency Using Engine Test Bench Measurements and Engine Process Simulation

2018-05-30
2018-37-0004
Downsizing of SI engines in combination with turbocharging is state of the art to reach future CO2 emission limits. A single stage turbocharged engine has a conflict of objectives between high rated power and high low-end-torque. To expand the stable map area of the compressor a variable compressor is investigated on an engine test bench supported by the use of engine process simulation. The measurements were carried out on a radial compressor with high trim compressor wheel. The limiting factor of the feasible low end torque is the surge line. Different inlet cross sections are investigated to shift the surge line to lower mass flow. The compressor maps are measured simultaneously on a hot gas and an engine test bench. A combination of both maps provides the input data for a 1D-simulation model of the test engine, which is presented in this paper. A predictive combustion model is validated for full and part load operating points up to 5000 rpm based on the serial production engine.
Technical Paper

Partial Admission Impulse Turbine for Automotive ORC Application

2013-09-08
2013-24-0092
The analysis of the energetic losses in a combustion engine shows that one-third of the chemical energy is lost as heat through the exhaust gas. Prior investigations have shown that an exhaust-gas driven Organic Rankine cycle (ORC) is suitable for the recovery of some of that energy. One of the essential components in such an ORC is the expansion machine. An investigation of the suitability of a turbine for this application is presented in this conceptual study. The concept is investigated for a heavy-duty truck application and a passenger-car application. On the basis of predefined design points, a thermodynamic analysis is performed to determine a suitable working fluid and the best process parameters. A single-stage partially admitted impulse turbine shows the best performance at tolerable rotational speeds for the resulting thermodynamic boundary conditions.
Technical Paper

The Potential of Variable Compressor Geometry for Highly Boosted Gasoline Engines

2011-04-12
2011-01-0376
The supercharging of small-displacement gasoline engines requires high pressure ratios combined with a wide range of air flow rate. To resolve this conflict, two-stage turbo charging with two turbochargers or the combination of a turbocharger and a mechanical compressor is used. But this is associated with an increase in complexity. The highest potential for avoiding a multi-stage system is provided by the systematic modification of the turbo-machinery operating maps, e.g. on the turbine side by using variable turbine geometry. An additional promising approach is the implementation on the compressor side of a variable guide vane. The shape of the compressor map is directly affected and the requirements for highly boosted engines can thus be fulfilled. The present paper provides an assessment of the potential of a variable compressor in combination with a variable geometry turbine (VTG) and additional wastegate on a small-volume gasoline engine.
X