Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Technical Paper

SEA Model Development for Cabin Noise Prediction of a Large Commercial Business Jet

2017-06-05
2017-01-1764
The demand for quieter interior cabin spaces among business jet customers has created an increased need for more accurate prediction tools. In this paper, the authors will discuss a collaborative effort between Jet Aviation and Gulfstream Aerospace Corporation to develop a Statistical Energy Analysis (SEA) model of a large commercial business jet. To have an accurate prediction, it is critical to accurately model the structural and acoustic subsystems, critical noise transmission paths, and dominant noise sources for the aircraft. The geometry in the SEA model was developed using 3D CAD models of major airframe and interior cabin components. The noise transmission path was characterized through extensive testing of various aircraft components in the Gulfstream Acoustic Test Facility. Material definitions developed from these tests became input parameters in the SEA model.
Technical Paper

Improving SEA Predictions with Experimental Data

2011-05-17
2011-01-1701
Statistical Energy Analysis (SEA) has been used widely by industry and academia for more than 20 years to predict the mid-to-high frequency range behavior of complex acoustic systems. At Gulfstream Aerospace Corporation (GAC), SEA models have been developed to predict the interior cabin noise levels of completed Gulfstream aircraft. These models are also used for acoustic evaluations of design changes prior to implementation as well as a diagnostic tool for investigating noise and vibration issues. Throughout the development of the SEA models, extensive experimental testing in GAC's Acoustic Test Facility (ATF) was conducted on numerous aircraft components represented in the models. This paper demonstrates the importance of using experimental data to improve the accuracy of the SEA predictions by accurately adjusting the material properties and acoustic parameters of the SEA model to better match the ATF experimental data.
X