Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Development of Surrogate for Fischer-Tropsch Biofuel and Reduced Mechanism for Combustion in Diesel Engine

2013-10-14
2013-01-2599
Development of numerical tools for quantitatively assessing biofuel combustion in Internal Combustion Engines and facilitating the identification of optimum operating parameters and emission strategy are challenges of engine combustion research. Biofuels obtained through e.g. a Fischer-Tropsch process (FT) are complex mixtures of wide ranges of high molecular weight hydrocarbons in the diesel and naphtha boiling range dominated by C10-C18 hydrocarbons in n-alkane, iso-alkane, alkenes, aromatic and oxygenate classes. In this paper modeling of combustion in a rapid compression machine has been performed using model compounds from a given FT biofuel distribution as surrogate fuels. Furthermore, the detailed mechanism has been reduced by applying an automatic necessity analysis removing redundant species from the detailed model.
Technical Paper

Optimizing the Performance of a 50cc Compression Ignition Two-Stroke Engine Operating on Dimethyl Ether

2011-04-12
2011-01-0144
The paper describes the optimization of a 50 cc crankcase scavenged two-stroke diesel engine operating on dimethyl ether (DME). The optimization is primarily done with respect to engine efficiency. The underlying idea behind the work is that the low weight, low internal friction and low engine-out NOx of such an engine could make it ideal for future vehicles operating on second-generation biofuels. Data is presented for the performance and emissions at the current state of development of the engine. Brake efficiencies above 30% were obtained despite the small size of the engine. In addition, efficiencies near the maximum were found over a wide operating range of speeds and loads. Maximum bmep is 500 kPa. Results are shown for engine speeds ranging from 2000 to 5000 rpm and loads from idle to full load. At all speeds and loads NOx emissions are below 200 ppm and smokeless operation is achieved. Design improvements relative to an earlier prototype are described.
X