Refine Your Search

Search Results

Technical Paper

Crash Modeling of High-Pressure Wet Wound Composite Vessels

2011-04-12
2011-01-0016
Limitations of fossil fuels and concerns surrounding global warming favor the introduction of new powertrain concepts with higher efficiency and low greenhouse gas emissions. Fuel cell vehicles offer the highest potential for sustainable mobility in the future. One major component of fuel cell vehicles is the hydrogen storage system. The most-used approach is to store hydrogen in carbon-fiber-reinforced plastic (CFRP) vessels manufactured by a filament-winding process with an operating pressure up to 70 MPa (hereafter referred as H₂ vessel). Accurate and reliable failure prediction of such thick composite structures with numerical methods in case of impact events is important. The objective of this paper is the evaluation of the commercial fiber-reinforced plastics material model MAT162 in LS-DYNA to describe both the onset and the progression of damage of the H₂ vessel. MAT162 has the capability of modeling progressive damage of composites.
X