Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Journal Article

A Comparative Study of Two Kinds of Biodiesels and Biodiesel-DEE Blends in a Common Rail Diesel Engine

2011-04-12
2011-01-0640
Ultrafine particles and NOx emissions of two kinds of biodiesels and their blends with diethyl ether (DEE) as an additive were compared under two engine speeds and three loads on a turbocharged, high-pressure, common rail diesel engine. A single spray injection and equivalence ratio distribution are used to explain the results. The study shows that biodiesel and biodiesel-DEE blend consume more fuels than diesel but slight variation in thermal efficiency. NOx emissions of waste cooking oil biodiesel are less than those of soybean biodiesel. At low and medium loads, DEE blending reduces the NOx emission. At all engine loads and speeds, the shape of ultrafine particle number distribution curve is unimodal, and fuel type slightly affects the shape of distribution curves. The number/mass distribution curves shift to fewer particles when operating on biodiesel and the curves further move to downward when DEE is added.
Journal Article

Effect of Injection Pressure on Ignition, Flame Development and Soot Formation Processes of Biodiesel Fuel Spray

2010-09-28
2010-32-0053
The effect of injection pressure ranging from 100 to 300MPa on the ignition, flame development and soot formation characteristics of biodiesel fuel spray using a common rail injection system for direct injection (D.I.) diesel engine was investigated. Experiments were carried out in a constant volume vessel under conditions similar to the real engine condition using a single hole nozzle. Biodiesel fuels from two sources namely; palm oil (BDFp) and cooked oil (BDFc) with the commercial JIS#2diesel fuel were utilized in this research. The OH chemiluminescence technique was used to determine the ignition and the lift-off length of the combusting flame. The natural luminosity technique was applied to study the flame development and the two color pyrometry was applied for the soot formation processes. Ignition delay decreased as the injection pressure progressed from 100 to 300MPa. This was as a result of the enhanced mixing achieved at higher injection pressures.
X