Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Technical Paper

Radiated Fuel Tank Slosh Noise Simulation

2011-04-12
2011-01-0495
With the introduction of hybrid vehicles and the associated elimination of engine and exhaust masking noises, sounds from other sources is becoming more noticeable. Fuel tank sloshing is one of these sources. Fuel sloshing occurs when a vehicle is accelerated in any direction and can create noise that may be perceived as a quality issue by the customer. To reduce slosh noise, a fuel tank has to be carefully designed. Reduction in slosh noise using test- based methods can be very costly and timely. This paper shows how, using the combination of CFD (Computational Fluid Dynamic), FE (Finite Element) and Acoustic simulation methods, the radiated fuel tank slosh noise performance can be evaluated using CAE methods. Although the de-coupled fluid /structure interaction (FSI) method was used for the examples in this paper, the acoustic simulation method is not limited to the decoupled FSI method.
Technical Paper

Synthesis of Drive-by Noise Based on Numerically Evaluated Source-Receiver Transfer Functions Employing the FMBEM

2011-05-17
2011-01-1610
Prediction of the drive-by noise level in the early design stage of an automotive vehicle is feasible if the source signatures and source-receiver transfer functions may be determined from simulations based on the available CAD/CAE models. This paper reports on the performance of a drive-by noise synthesis procedure in which the transfer functions are numerically evaluated by employing the Fast Multipole Boundary Element Method (FMBEM). The proposed synthesis procedure first computes the steady-state receiver contributions of the sources as appearing from a number of vehicle positions along the drive path. In a second step, these contributions are then combined into a single transient signal from a moving vehicle for each source-receiver pair by means of a travel time correction.
X