Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Technical Paper

The Influence of Intake Port and Pent-Roof Structures on Reversed Tumble Generation of a Poppet-Valved Two-Stroke Gasoline Engine

2014-04-01
2014-01-1130
In order to minimize short-circuiting of the intake charge in the poppet-valved 2-stroke engine, measures are taken to generate reversed tumble in the cylinder. In this study, five different types of intake ports and three types of pent-roof geometries were designed and analysed of their ability to generate and maintain reversed tumble flows by means of CFD simulation for their intake processes on a steady flow rig. Their flow characteristics were then assessed and compared to that of the vertical top-entry ports. Results show that the side-entry port designs can achieve comparatively high tumble intensity. The addition of flow deflectors inside the side-entry ports does not have much effect on the reversed tumble ratio. The top-entry ports have the highest flow coefficient among all the intake ports examined as well as producing strong reversed tumble. It is also found that the pent-roof at a wider angle helps to strengthen the tumble intensity due to increased air flow rate.
Technical Paper

Continuous Load Adjustment Strategy of a Gasoline HCCI-SI Engine Fully Controlled by Exhaust Gas

2011-04-12
2011-01-1408
Homogeneous charge compression ignition (HCCI) technology is promising to reduce engine exhaust emissions and fuel consumption. However, it is still confronted with the problem of its narrow operation range that covers only the light and medium loads. Therefore, to expand the operation range of HCCI, mode switching between HCCI combustion and transition SI combustion is necessary, which may bring additional problems to be resolved, including load fluctuation and increasing the complexity of control strategy, etc. In this paper, a continuously adjustable load strategy is proposed for gasoline engines. With the application of the strategy, engine load can be adjusted continuously by the in-cylinder residual gas fraction in the whole operation range. In this research, hybrid combustion is employed to bridge the gaps between HCCI and traditional SI and thus realize smooth transition between different load points.
X