Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Technical Paper

Influence of Gear Web and Macro Geometry on Mesh Misalignment

2016-02-01
2016-28-0082
In an automotive transmission system, gear mesh misalignment implies the shift in the position of the meshing surfaces. Misalignment at the mesh results in non-uniform load distribution leading to gear failure, increased noise and thus affects the transmission performance. In general, misalignment along the line of action (MLOA) of 0-5 mrad is common in the gear meshes of automotive transmissions. Major factors contributing to mesh misalignment are deflections of various elastic components in the transmission like shaft, gear web, bearing, housing etc. Contribution from other factors include clearance between the components, temperature gradient and manufacturing process limitations. Different approaches for compensating gear mesh misalignment involves control over the above factors at design and manufacturing stages. This paper focuses on three different approaches for compensating MLOA in the design stage.
Technical Paper

Influence of Micro-Geometry on Gear Scuffing

2015-01-14
2015-26-0187
Scuffing is an instantaneous failure which occurs when the meshed gear flanks undergo adhesive wear under extreme operating temperatures at medium- or high-speed conditions. It is one of the common failures in transmission gears, which tend to operate under long-duty cycle hours. The tip and the root regions often experience higher contact pressures because of the loading and surface curvature. These higher pressures, coupled with higher sliding velocities and heat generation, make the tip and root regions in the gear susceptible to scuffing. Gear geometry, material composition and lubricant properties influence scuffing. A balanced gear tooth design with lower sliding velocities is often chosen as an approach to avoid scuffing. However, in the current scenarios of transmissions with high power density requirements, achieving a balanced gear tooth design is rare. Lubricants with higher viscosity avoid scuffing, but have adverse effects on the transmission efficiency.
X