Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Thermal Runaway Characterization in an Optically Accessible Vessel: Effect of Battery Cell Chemistry and State of Charge

2023-08-28
2023-24-0165
One of the solutions for reducing greenhouse gas emissions in the transport sector is the electrification of mobility. The technology currently most widely used by car manufacturers is the Li-ion battery (LiB). Unfortunately, Li-ion batteries can suffer dramatic events with catastrophic consequences known as thermal runaway (TR). TR has many possible causes: excessive temperature, mechanical deformation, electrical overcharge, internal short circuit. Typically, TR causes violent combustion that is difficult or impossible to control, with the emission of potentially toxic gases and particles. TR is a major problem for manufacturers and can have serious consequences for users. Understanding TR is a key safety issue. This paper presents a new methodology to characterize the thermal runaway of Li-ion battery cells, combining gas analysis, thermodynamic measurements and high-speed imaging.
Technical Paper

Experimental Characterization of the Variability of the Thermal Runaway Phenomenon of a Li-ion Battery

2023-08-28
2023-24-0160
The electrification of mobility is a major inflection point for reducing greenhouse gas emissions and air pollutants from the transportation sector. In this context, the Li-ion battery is currently the technology shared by automakers to provide the energy storage needed to deploy electrified vehicles. However, Li-ion batteries can undergo incidents with dramatic consequences, referred to as thermal runaway (TR). This can result from abnormal conditions: excessive temperature, mechanical deformation, electrical overcharge, internal short circuit. TR is characterized by a violent reaction, that is, difficult to control and can release hazardous gases. This issue is today a crucial safety concern that strongly impacts the design and the battery management strategies. The objective of this study is to contribute to the understanding of the phenomena by focusing on the variability of the battery cell (BC) TR induced by thermal initiation.
Technical Paper

Water Injection to Improve Direct Injection Spark Ignition Engine Efficiency

2019-04-02
2019-01-1139
The increasing use of downsized turbocharged gasoline engines for passengers cars and the new European homologation cycles (WLTC and RDE) both impose an optimization of the whole engine map. More weight is given to mid and high loads, thus enhancing knock and overfueling limitations. At low and moderate engine speeds, knock mitigation is one of the main issues, generally addressed by retarding spark advance thereby penalizing the combustion efficiency. At high engine speeds, knock still occurs but is less problematic. However, in order to comply with thermo-mechanical properties of the turbine, excess fuel is injected to limit the exhaust gas temperature while maximizing engine power, even with cooled exhaust manifolds. This also implies a decrease of the combustion efficiency and an increase in pollutant emissions. Water injection is one way to overcome both limitations.
Technical Paper

Experimental Investigation of Novel Ammonia Mixer Designs for SCR Systems

2018-04-03
2018-01-0343
Meeting Euro 6d NOx emission regulations lower than 80 mg/km for light duty diesel (60 mg/km gasoline) vehicles remains a challenge, especially during cold-start tests at which the selective catalyst reduction (SCR) system does not work because of low exhaust gas temperatures (light-off temperature around 200 °C). While several exhaust aftertreatment system (EATS) designs are suggested in literature, solutions with gaseous ammonia injections seem to be an efficient and cost-effective way to enhance the NOx abatement at low temperature. Compared to standard SCR systems using urea water solution (UWS) injection, gaseous NH3 systems allow an earlier injection, prevent deposit formation and increase the NH3 content density. However non-uniform ammonia mixture distribution upstream of the SCR catalyst remains an issue. These exhaust gas/ NH3 inhomogeneities lead to a non-optimal NOx reduction performance, resulting in higher than expected NOx emissions and/or ammonia slip.
Journal Article

The Benefits of Diesel Exhaust Fluid (DEF) Additivation on Urea-Derived Deposits Formation in a Close-Coupled Diesel SCR on Filter Exhaust Line

2017-10-08
2017-01-2370
Diesel Exhaust Fluid (DEF) like Adblue® is a urea/water solution injected upstream from the SCR catalyst. Urea decomposes into ammonia (NH3) which acts as reducing agent in the de-NOx reaction process. However, incomplete decomposition of urea can lead to unwanted deposits formation, thereby resulting into backpressure increase, loss of NOx reduction efficiency, and durability issues. The phenomenon is aggravated at low temperatures and can lead to restriction or stop of DEF injection below certain exhaust temperatures. This paper focuses on the influence of the additivation of DEF on deposits formation in a passenger car close-coupled SCR on filter Diesel exhaust line installed in a laboratory flow bench test. The behavior of two different additivated DEF was compared to Adblue® in terms of deposits formation on the mixer and SCRF canning at different temperatures comprised between 240°C and 165°C, and different air flows.
Journal Article

Computational Fluid Dynamics Study of Gaseous Ammonia Mixing in an Exhaust Pipe Using Static Mixers

2017-03-28
2017-01-1018
Ever growing traffic has a detrimental effect on health and environment. In response to climate warming and health concerns, governments worldwide enforce more stringent emission standards. NOx emissions limits are some of the most challenging to meet using fuel-efficient lean-burn engines. The Selective Catalytic Reduction (SCR) is one consolidated NOx after-treatment technique using urea water solution (UWS) injection upstream of the catalytic converter. A recent development of SCR, using gaseous ammonia injection, reduces wall deposit formation and improves the cold-start efficiency. The mixing of gaseous ammonia with the exhaust gases is one of the key challenges that need to be overcome, as the effectiveness of the system is strongly dependent on the mixture uniformity at the inlet of the SCR catalyst.
Technical Paper

Optical Characterization of the Quality of the Diesel Injection in the Exhaust Line for DPF Active Regeneration

2015-04-14
2015-01-1647
Euro VI standards for heavy duty vehicles require the use of a DPF in order to comply with the particulate matter emission limit. Although passive regeneration of soot by NO2, promoted by a DOC located upstream the DPF, is preferred, the use of an active regeneration might be required whenever the soot mass trapped in the DPF increases. Some manufacturers made the choice of having a fuel injection in the exhaust system in order to generate an exothermic reaction in the DOC that helps to regenerate the particulate filter. This dedicated circuit avoids the use of in-cylinder post-injection which may induce oil dilution by diesel. The DPF regeneration is efficient and the DOC works durably if the exhaust diesel spray is completely vaporized before entering the DOC and is thoroughly mixed with the exhaust gases. However, ensuring complete evaporation and an optimum mixture distribution in the exhaust line is challenging.
Technical Paper

Experimental Characterization of SCR DeNOx-Systems: Visualization of Urea-Water-Solution and Exhaust Gas Mixture

2014-04-01
2014-01-1524
The selective catalytic reduction (SCR) based on urea water solution (UWS) is an effective way to reduce nitrogen oxides (NOx) emitted by engines. The high potential offered by this solution makes it a promising way to meet the future stringent exhaust gas standards (Euro6 and Tier2 Bin5). UWS is injected into the exhaust upstream of an SCR catalyst. The catalyst works efficiently and durably if the spray is completely vaporized and thoroughly mixed with the exhaust gases before entering. Ensuring complete vaporization and optimum mixture distribution in the exhaust line is challenging, especially for compact exhaust lines. Numerous parameters affect the degree of mixing: urea injection pressure and spray angle, internal flow field (fluid dynamics), injector location …. In order to quantify the mixture quality (vaporization, homogeneity) upstream of the SCR catalyst, it is proposed to employ non intrusive optical diagnostics techniques such as laser induced fluorescence (LIF).
Technical Paper

How to Improve Light Duty Diesel Based on Heavy Duty Diesel Thermodynamic Analysis?

2013-04-08
2013-01-1623
The Diesel engine has now become a vital component of the transport sector, in view of its performance in terms of efficiency and therefore CO2 emissions some 25 % less than a traditional gasoline engine, its main competitor. However, the introduction of more and more stringent regulations on engine emissions (NOx, PM) requires complex after-treatment systems and combustion strategies to decrease pollutant emissions (regeneration strategies, injection strategies, …) with some penalty in fuel consumption. It becomes necessary to find new ways to improve the Diesel efficiency in order to maintain its inherent advantage. In the present work, we are looking for strategies and technologies to reduce Diesel engine fuel consumption. Based on the observation that large Diesel engines have a better efficiency than the smaller ones, a detailed thermodynamic combustion analysis of one Heavy Duty (HD) engine and two Passenger car (PC) engines is performed to understand these differences.
X