Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Collaborative Design Optimization for Light Weight Design

2014-04-01
2014-01-0392
During the timeframe from 2012 - 2020 mass based fuel consumption and CO2 limits will be applied to all new vehicles. The weight reduction targets for the body, closures and other structural components in the vehicle can be accomplished by a combination of design optimization, material substitution, and de-contenting. The current vehicle development strategy is focused on designing lighter and cost competitive new vehicles. EDAG Inc. has carried out lightweight design studies (funded by EPA and in collaboration with FEV) on some current production vehicles. These studies included the mandate that the resulting vehicles should meet and/or exceed the regulatory crash safety and current NVH performance requirements. Combined with sub-system level optimization, Multi-Discipline-Optimization (MDO) automation was carried out with seven performance and one cost constraints.
Technical Paper

Automating Instrument Panel Head Impact Simulation

2005-04-11
2005-01-1221
Occupant head impact simulations on automotive instrument panels (IP) are routinely performed as part of an integrated design process during the course of IP development. Based on the requirements (F/CMVSS, ECE), head impact zones on the IP are first established, which are then used to determine the various “hit” locations to be tested/analyzed. Once critical impact locations are identified, CAE simulations performed which is a repetitive process that involves computing impact angles, positioning the rigid head form with an assigned initial velocity and defining suitable contacts within the finite element model. A commercially available CAE process automation tool was used to automate these steps and generate a head impact simulation model. Once the input model is checked for errors by the automated process, it can be submitted to a solver without any user intervention for analysis and report generation.
Technical Paper

Full Vehicle Tailored Parts Optimization - Light Weighting

2015-04-14
2015-01-1361
Application of high strength steel (HSS) and advanced high strength steel (AHSS) in automotive vehicle structure has been one of the feasible ways to achieve light weight vehicle. Automotive OEMs continue to engineer body structures with high strength grade steels by reducing component thickness (Gauge and Grade (2G) Optimization) to develop light weight, fuel efficient vehicles. In addition to the 2G optimization, design (Geometry) change of the body structure is also considered as an effective approach of reducing the body structure weight (3G Optimization). However design change lengthens product development time, requires tooling modification and/or new tools design, and increases production time, cost and product-to-market time. Tailored parts (also known as Tailor made parts), where pieces of varying thickness are combined into one part, involving no design change and less tooling requirements, are good alternatives to reduce the weight of the body structure significantly.
X