Refine Your Search

Search Results

Author:
Viewing 1 to 6 of 6
Journal Article

Optical Engine Operation to Attain Piston Temperatures Representative of Metal Engine Conditions

2017-03-28
2017-01-0619
Piston temperature plays a major role in determining details of fuel spray vaporization, fuel film deposition and the resulting combustion in direct-injection engines. Due to different heat transfer properties that occur in optical and all-metal engines, it becomes an inevitable requirement to verify the piston temperatures in both engine configurations before carrying out optical engine studies. A novel Spot Infrared-based Temperature (SIR-T) technique was developed to measure the piston window temperature in an optical engine. Chromium spots of 200 nm thickness were vacuum-arc deposited at different locations on a sapphire window. An infrared (IR) camera was used to record the intensity of radiation emitted by the deposited spots. From a set of calibration experiments, a relation was established between the IR camera measurements of these spots and the surface temperature measured by a thermocouple.
Journal Article

Comparison of Direct-Injection Spray Development of E10 Gasoline to a Single and Multi-Component E10 Gasoline Surrogate

2017-03-28
2017-01-0833
Optical and laser diagnostics enable in-depth spray characterization in regards to macroscopic spray characteristics and in-situ fuel mixture quality information, which are needed in understanding the spray injection process and for spray model development, validation and calibration. Use of fuel surrogates in spray researches is beneficial in controlling fuel parameters, developing spray and combustion kinetic models, and performing laser diagnostics with known fluorescence characteristics. This study quantifies and evaluates the macroscopic spray characteristics of a single and multi-component surrogate in comparison to a gasoline with 10% ethanol under gasoline direct injection (GDI) engine conditions. In addition, the effect of fuel tracers on spray evolution and vaporization is also investigated. Both diethyl-methyl-amine/fluorobenzene as a laser-induced exciplex (LIEF) fluorescence tracer pair and 3-pentanone as a laser-induced fluorescence (LIF) tracer are examined.
Technical Paper

Analysis of Variations in Fuel Spray, Combustion, and Soot Production in an Optical Diesel Engine Operating Under High Simulated Exhaust Gas Recirculation Operating Conditions

2016-04-05
2016-01-0727
In-cylinder visualization experiments were completed using an International VT275-based optical DI Diesel engine operating under high simulated exhaust gas recirculation combustion conditions. Experiments were run at four load conditions to examine variations in fuel spray, combustion, and soot production. Mass fraction burned analyses of pressure data were used to investigate the combustion processes of the various operating conditions. An infrared camera was used to visualize fuel spray events and exothermic combustion gases. A visible, high-speed camera was used to image natural luminosity produced by soot. The recorded images were post-processed to analyze the fuel spray, the projected exothermic areas produced by combustion, as well as soot production of different load conditions. Probability maps of combustion and fuel spray occurrence in the cylinder are presented for insight into the combustion processes of the different conditions.
Journal Article

Visualization of Propane and Natural Gas Spark Ignition and Turbulent Jet Ignition Combustion

2012-10-23
2012-32-0002
This study focuses on the combustion visualization of spark ignition combustion in an optical single cylinder engine using natural gas and propane at several air to fuel ratios and speed-load operating points. Propane and natural gas fuels were compared as they are the most promising gaseous alternative fuels for reciprocating powertrains, with both fuels beginning to find wide market penetration on the fleet level across many regions of the world. Additionally, when compared to gasoline, these gaseous fuels are affordable, have high knock resistance and relatively low carbon content and they do not suffer from the complex re-fueling and storage problems associated with hydrogen.
Technical Paper

Optical Diagnostic Combustion Comparisons of Pump Diesel with Bio-Derived Diesel Blends in an Optical DI Diesel Engine

2012-04-16
2012-01-0868
Combustion studies were completed using an International VT275-based, optical DI Diesel engine fueled with Diesel fuel, a Canola-derived FAMES biodiesel, as well as with a blend of the Canola-derived biodiesel and a cetane-reducing, oxygenated fuel, Di-Butyl Succinate. Three engine operating conditions were tested to examine the combustion of the fuels across a range of loads and combustion schemes. Pressure data and instantaneous images were recorded using a high-speed visible imaging, infrared imaging, and high-speed OH imaging techniques. The recorded images were post processed to analyze different metrics, such as projected areas of in-cylinder soot, OH, and combustion volumes. A substantially reduced in-cylinder area of soot formation is observed for the Canola-DBS blended fuel with a slight reduction from the pure FAMES biodiesel compared to pump Diesel fuel.
Technical Paper

A Demonstration of Simultaneous Infrared and Visible Imaging Techniques with Pressure Data in an Optically Accessible Diesel Engine Operating at Part Load with High EGR

2011-04-12
2011-01-1395
This work presents a method for simultaneously capturing visible and infrared images along with pressure data in an optical Diesel engine based on the International 4.5L VT275 engine. This paper seeks to illustrate the merits of each imaging technique for visualizing both in-cylinder fuel spray and combustion. The engine was operated under a part load, high simulated exhaust gas recirculation operating condition. Experiments examining fuel spray were conducted in nitrogen. Overlays of simultaneously acquired infrared and visible images are presented to illustrate the differences in imaging between the two techniques. It is seen that the infrared images spatially describe the fuel spray, especially fuel vapors, and the fuel mixing process better than the high-speed visible images.
X