Refine Your Search

Search Results

Author:
Viewing 1 to 7 of 7
Journal Article

Fuel Consumption Sensitivity of Conventional and Hybrid Electric Light-Duty Gasoline Vehicles to Driving Style

2017-08-11
2017-01-9379
Abstract Aggressive driving is an important topic for many reasons, one of which is higher energy used per unit distance traveled, potentially accompanied by an elevated production of greenhouse gases and other pollutants. Examining a large data set of self-reported fuel economy (FE) values revealed that the dispersion of FE values is quite large and is larger for hybrid electric vehicles (HEVs) than for conventional gasoline vehicles. This occurred despite the fact that the city and highway FE ratings for HEVs are generally much closer in value than for conventional gasoline vehicles. A study was undertaken to better understand this and better quantify the effects of aggressive driving, including reviewing past aggressive driving studies, developing and exercising a new vehicle energy model, and conducting a related experimental investigation.
Journal Article

Electric Drive Transient Behavior Modeling: Comparison of Steady State Map Based Offline Simulation and Hardware-in-the-Loop Testing

2017-03-28
2017-01-1605
Electric drives, whether in battery electric vehicles (BEVs) or various other applications, are an important part of modern transportation. Traditionally, physics-based models based on steady-state mapping of electric drives have been used to evaluate their behavior under transient conditions. Hardware-in-the-Loop (HIL) testing seeks to provide a more accurate representation of a component’s behavior under transient load conditions that are more representative of real world conditions it will operate under, without requiring a full vehicle installation. Oak Ridge National Laboratory (ORNL) developed such a HIL test platform capable of subjecting electric drives to both conventional steady-state test procedures as well as transient experiments such as vehicle drive cycles.
Technical Paper

Big Area Additive Manufacturing and Hardware-in-the-Loop for Rapid Vehicle Powertrain Prototyping: A Case Study on the Development of a 3-D-Printed Shelby Cobra

2016-04-05
2016-01-0328
Abstract Rapid vehicle powertrain development has become a technological breakthrough for the design and implementation of vehicles that meet and exceed the fuel efficiency, cost, and performance targets expected by today’s consumer. Recently, advances in large scale additive manufacturing have provided the means to bridge hardware-in-the-loop with preproduction mule chassis testing. This paper details a case study from Oak Ridge National Laboratory bridging the powertrain-in-the-loop development process with vehicle systems implementation using big area additive manufacturing (BAAM). For this case study, the use of a component-in-the-loop laboratory with math-based models is detailed for the design of a battery electric powertrain to be implemented in a printed prototype mule. The ability for BAAM to accelerate the mule development process via the concept of computer-aided design to part is explored.
Journal Article

PHEV Cold Start Emissions Management

2013-04-08
2013-01-0358
Plug-in hybrid electric vehicles (PHEV) operate predominantly as electric vehicles (EV) with intermittent assist from the engine. As a consequence, the engine can be subjected to multiple cold start events. These cold start events have a significant impact on tailpipe emissions due to degraded catalyst performance and starting the engine under less than ideal conditions. On current conventional vehicles, the first cold start of the engine dictates whether or not the vehicle will pass federal emissions tests. PHEV operation compounds this problem due to infrequent, multiple engine cold starts. ORNL, in collaboration with the University of Tennessee, developed an Engine-In-the-Loop (EIL) test platform to investigate cold start emissions on a 2.0l Gasoline Turbocharged Direct Injection (GTDI) Ecotec engine coupled to a virtual series hybrid electric vehicle.
Technical Paper

The Electric Drive Advanced Battery (EDAB) Project: Development and Utilization of an On-Road Energy Storage System Testbed

2013-04-08
2013-01-1533
As energy storage system (ESS) technology advances, vehicle testing in both laboratory and on-road settings is needed to characterize the performance of state-of-the-art technology and also identify areas for future improvement. The Idaho National Laboratory (INL), through its support of the U.S. Department of Energy's (DOE) Advanced Vehicle Testing Activity (AVTA), is collaborating with ECOtality North America and Oak Ridge National Laboratory (ORNL) to conduct on-road testing of advanced ESSs for the Electric Drive Advanced Battery (EDAB) project. The project objective is to test a variety of advanced ESSs that are close to commercialization in a controlled environment that simulates usage within the intended application with the variability of on-road driving to quantify the ESS capabilities, limitations, and performance fade over cycling of the ESS.
Technical Paper

European Lean Gasoline Direct Injection Vehicle Benchmark

2011-04-12
2011-01-1218
Lean Gasoline Direct Injection (LGDI) combustion is a promising technical path for achieving significant improvements in fuel efficiency while meeting future emissions requirements. Though Stoichiometric Gasoline Direct Injection (SGDI) technology is commercially available in a few vehicles on the American market, LGDI vehicles are not, but can be found in Europe. Oak Ridge National Laboratory (ORNL) obtained a European BMW 1-series fitted with a 2.01 LGDI engine. The vehicle was instrumented and commissioned on a chassis dynamometer. The engine and after-treatment performance and emissions were characterized over US drive cycles (Federal Test Procedure (FTP), the Highway Fuel Economy Test (HFET), and US06 Supplemental Federal Test Procedure (US06)) and steady state mappings. The vehicle micro hybrid features (engine stop-start and intelligent alternator) were benchmarked as well during the course of that study.
Journal Article

Lean Gasoline Engine Reductant Chemistry During Lean NOx Trap Regeneration

2010-10-25
2010-01-2267
Lean NOx Trap (LNT) catalysts can effectively reduce NOx from lean engine exhaust. Significant research for LNTs in diesel engine applications has been performed and has led to commercialization of the technology. For lean gasoline engine applications, advanced direct injection engines have led to a renewed interest in the potential for lean gasoline vehicles and, thereby, a renewed demand for lean NOx control. To understand the gasoline-based reductant chemistry during regeneration, a BMW lean gasoline vehicle has been studied on a chassis dynamometer. Exhaust samples were collected and analyzed for key reductant species such as H₂, CO, NH₃, and hydrocarbons during transient drive cycles. The relation of the reductant species to LNT performance will be discussed. Furthermore, the challenges of NOx storage in the lean gasoline application are reviewed.
X