Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Developing IVHM Requirements for Aerospace Systems

2013-09-17
2013-01-2333
The term Integrated Vehicle Health Management (IVHM) describes a set of capabilities that enable sustainable and safe operation of components and subsystems within aerospace platforms. However, very little guidance exists for the systems engineering aspects of design with IVHM in mind. It is probably because of this that designers have to use knowledge picked up exclusively by experience rather than by established process. This motivated a group of leading IVHM practitioners within the aerospace industry under the aegis of SAE's HM-1 technical committee to author a document that hopes to give working engineers and program managers clear guidance on all the elements of IVHM that they need to consider before designing a system. This proposed recommended practice (ARP6883 [1]) will describe all the steps of requirements generation and management as it applies to IVHM systems, and demonstrate these with a “real-world” example related to designing a landing gear system.
Technical Paper

An Overview of Electrically Powered Control Actuation Health Management

2010-11-02
2010-01-1746
As More Electric Aircraft design becomes the preferred system concept for several aerospace platforms, the electro-mechanical actuator (EMA) is emerging as a solution of choice for the primary flight control actuation system. This paper will give a brief history of electric actuation for flight systems, diagnosis and prognosis demonstrations and current state of health management research. AFRL and NASA working with industry and academic partners have been developing health management technologies that will help prevent the occurrence of some inherent EMA failure modes. Advanced fault diagnostics and failure prognostics were applied to the critical failure modes identified in the Failure Mode, Effects, and Criticality Analysis (FMECA). Modeling and simulation of EMA with degraded components were developed to support the design and evaluation of physics-based algorithms. Test data were generated using EMA hardware to validate high-fidelity EMA and physics-of-failure models.
X