Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Technical Paper

The Research on Electrical Parking Brake System based on Frictional Model

2015-09-27
2015-01-2701
The control forms of the vehicle have transformed from hydraulic or mechanical control to electrical control owing to the increasing demand of automotive safety and soaring development of electronic technology. Compared with the traditional mechanical parking brake system, the electrical control of brake named Electrical Parking Brake (EPB) System presents a variety of advantages. What's more, it shares common actuators and realizes the communication between electrical control systems to advance the vehicle industry to intellectualization. With such superiority, the EPB System has aroused much interest. But the difficulty in building the simulation model lies in the description of friction in screw-nut system of which the nonlinear component causes the hysteresis. However, almost all models found in the literature before are the static friction model with the limit of description of dynamic features like pre-sliding frictional features and parameters variation.
Technical Paper

Vehicle Braking System Calculation and Simulation Software Platform

2012-09-24
2012-01-1895
The brake performance is one of the most important performances in the automotive active safety, and it is the main measure of automotive active safety. Thus, to develop a platform for the braking system is quite significant. Based on the object-oriented technology, the platform for braking system is developed by making use of Visual C++ 6.0 development tool. By using the VC++ development tool and doing secondary development on other softwares, the software possesses powerful features, such as brake plan selection, performance calculation, parametric modeling, finite element analysis and kinematics simulation, etc. An initial brake system can be designed, calculated and analyzed all in one. The living instance shows that the platform has friendly user interfaces, powerful functions and it can improve the precision and efficiency of brake design. The platform has been of great applied value and can also positively promote the design automation of vehicle's braking system.
X