Refine Your Search

Search Results

Author:
Viewing 1 to 3 of 3
Technical Paper

Turbine Housing Boss Design in Turbocharger Application

2014-10-13
2014-01-2849
Turbochargers are widely used to boost internal combustion engines for both on and off high way applications to meet emission and performance requirements. Due to the high operating temperature, turbochargers are subjected to hostile environment. Low vibration level is one of the key requirements while designing turbo for every application. An engine bracket is employed to support turbine housing to reduce total vibration level. Turbine housing in the turbocharger is commonly equipped with boss to accommodate the engine bracket supporting which eventually includes additional constraints in the turbocharger system. Additional constraints in the turbine housing can lead to adverse impact in the Thermo-Mechanical Fatigue (TMF) life of the housing component. Boss generally has critical influence to thermal stress distribution of the turbine housing.
Technical Paper

A Novel Design and Validation for Turbine Housing Inlet Flange

2013-10-14
2013-01-2645
Turbocharger is widely used to boost engine due to emissions, fuel and cost reasons. As one of the hot components, it is subjected to severe temperature and thermal load history. Under these conditions, the material suffers hostile thermal mechanical fatigue (TMF) damage especially for the turbine housing side which absorbs hot exhaust gas directly to drive the turbine wheel. The cracking of turbine housing occurs frequently in the inlet flange location due to its very complex geometry and consequently complicated temperature and stress distribution, seriously affecting the normal operation of the engine. In the electric power industry, one of the most challenging tasks is to ensure the guaranteed lifetime. This paper proposes a novel turbine housing inlet flange design to control this type of failure effectively and improve the component lifetime and reliability. The novel design extends the inlet flange and includes the heat dissipation function as well.
Technical Paper

A Methodology to Predict Axial Clamping Force and Anti-rotating Torque for V-band Joint

2010-11-02
2010-01-1813
V-band joint was originally developed during World War II by the Marmon Corporation for use in the aircraft industry. The U.S. Military used Marman clamp to secure the atomic bombs during transport at the end of the Second World War. It has been widely used in a variety of applications including pumps, engines, exhaust systems, turbochargers to offer effective fastening solutions and greatly simplify assembly and service. In addition, the orientation of the connected components can be easily adjusted according to customer's request. So it has been popularly adopted in the field of turbochargers. The axial clamping force and anti-rotating torque are two key parameters in turbocharger applications to verify the quality of the v-band joint during its operation. It is important for the v-band joint to have sufficient axial clamping force to prevent leakage and wheel damage.
X