Refine Your Search

Search Results

Author:
Viewing 1 to 5 of 5
Technical Paper

Experimental Investigation on the Gas Jet Behavior for a Hollow Cone Piezoelectric Injector

2014-10-13
2014-01-2749
Direct injection of natural gas in engines is considered a promising approach toward reducing engine out emissions and fuel consumption. As a consequence, new gas injection strategies have to be developed for easing direct injection of natural gas and its mixing processes with the surrounding air. In this study, the behavior of a hollow cone gas jet generated by a piezoelectric injector was experimentally investigated by means of tracer-based planar laser-induced fluorescence (PLIF). Pressurized acetone-doped nitrogen was injected in a constant pressure and temperature measurement chamber with optical access. The jet was imaged at different timings after start of injection and its time evolution was analyzed as a function of injection pressure and needle lift.
Technical Paper

Comparing Breakup Models in a Novel High Injection Pressure SCR System using Polyhedral Meshing

2014-10-13
2014-01-2816
A novel high pressure SCR spray system is investigated both experimentally and numerically. RANS simulations are performed using Star-CD and polyhedral meshing. This is one of the first studies to compare droplet breakup models and AdBlue injection with high injection pressure (Pinj=200 bar). The breakup models compared are the Reitz-Diwakar (RD), the Kelvin-Helmholtz and Rayleigh-Taylor (KHRT), and the Enhanced Taylor Analogy Breakup (ETAB) model. The models are compared with standard model parameters typically used in diesel fuel injection studies to assess their performance without any significant parameter tuning. Experimental evidence from similar systems seems to be scarce on high pressure AdBlue (or water) sprays using plain hole nozzles. Due to this, it is difficult to estimate a realistic droplet size distribution accurately. Thereby, there is potential for new experimental data to be made with high pressure AdBlue or water sprays.
Technical Paper

Improving the Accuracy of 1-D Fuel Injection Modeling

2012-04-16
2012-01-1256
In this study, one-dimensional fluid dynamics simulation software was utilized in producing common rail diesel fuel injection for varying injection parameters with enhanced accuracy. Injection modeling refinement is motivated by improved comprehension of the effects of various physical phenomena within the injector. In addition, refined injection results yield boundary conditions for three-dimensional CFD simulations. The criteria for successful simulation results were evaluated upon experimental test run data that have been reliably obtained, primarily total injected mass per cycle. A common rail diesel fuel delivery system and its core mechanics were presented. System factors most critical to fuel delivery were focalized. Models of two solenoid-type common rail injectors of different physical sizes and applications were enhanced.
Technical Paper

Experimental Study of Spray Characteristics between Hydrotreated Vegetable Oil (HVO) and Crude Oil Based EN 590 Diesel Fuel

2011-09-11
2011-24-0042
The aim of current study was to compare the global fuel spray characteristics between renewable hydrotreated vegetable oil (HVO) and crude oil-based EN 590 diesel fuel. According to previous studies, the use of HVO enables reductions in carbon monoxide (CO), total hydrocarbon (THC), nitrogen oxide (NOx) and particle matter (PM) emissions without any changes to the engine or its controls. Fuel injection strategies and global fuel spray characteristics affect on engine combustion and exhaust gas emissions. Due to different physical properties of two different fuels, fuel spray characteristics differ. Fuel spray studies were performed with backlight imaging using a pressurized test chamber imitating real engine conditions at the end of compression stroke. However, the measurements were made in non-evaporative conditions. Various injection parameters such as injection pressures and orifice diameter were tested.
Technical Paper

Experimental Study on Structure and Mixing of Low-Pressure Gas Jet Using Tracer-Based PLIF Technique

2011-09-11
2011-24-0039
Natural gas has been considered as one promising alternative fuel for internal combustion (IC) engines to meet strict engine emission regulations and reduce the dependence on petroleum oil. Although compressed natural gas (CNG) intake manifold injection has been successfully applied into spark ignition (SI) engines in the past decade, natural gas direct injection compression ignition (DICI) engine with new injection system is being pursued to improve engine performance. Gas jet behaves significantly different from liquid fuels, so the better understanding of the effects of gas jet on fuel distribution and mixing process is essential for combustion and emission optimization. The present work is aimed to gain further insight into the characteristics of low pressure gas jet. An experimental gas jet investigation has been successfully conducted using tracer-based planar laser-induced fluorescence (PLIF) technique. For safety reason, nitrogen (N₂) was instead of CNG in this study.
X