Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Technical Paper

Complex Systems Method Applied to Identify Carbon Dioxide Emission Reductions for Light-Duty Vehicles for the 2020-2025 Timeframe

2012-04-16
2012-01-0360
The U.S. Environmental Protection Agency, U.S. Department of Transportation's National Highway and Traffic Safety Administration, and the California Air Resources Board have recently released proposed new regulations for greenhouse gas emissions and fuel economy for light-duty vehicles and trucks in model years 2017-2025. These proposed regulations intend to significantly reduce greenhouse gas emissions and increase fleet fuel economy from current levels. At the fleet level, these rules the proposed regulations represent a 50% reduction in greenhouse gas emissions by new vehicles in 2025 compared to current fleet levels. At the same time, global growth, especially in developing economies, should continue to drive demand for crude oil and may lead to further fuel price increases. Both of these trends will therefore require light duty vehicles (LDV) to significantly improve their greenhouse gas emissions over the next 5-15 years to meet regulatory requirements and customer demand.
Technical Paper

Validation of Methods for Rapid Design and Performance Prediction of Water Pumps

2001-05-14
2001-01-1715
Tools for the design and evaluation of engine water pumps have been developed. These tools range from textbook calculations to 3-dimensional computational fluid dynamics methods. The choice of the tools or the combination of tools used is usually dependent upon production timelines, rather than technical merit. Therefore, the strengths and weaknesses of each of the tools must be understood, and each tool must be validated for its specific purpose, then used appropriately to aid in the design or development of a water pump suitable for production. This study was carried out to evaluate three approaches: a proprietary Ricardo approach based on 1-dimensional analysis and correlations, a 3-dimensional computational fluid dynamics approach, and a conventional prototype manufacture and test iteration approach. The analytical results were correlated to experimentally obtained pressure rise, mass flow rate, and impeller speed data.
X