Refine Your Search

Search Results

Author:
Viewing 1 to 6 of 6
Journal Article

Integrated Power and Thermal Management System (IPTMS) Demonstration Including Preliminary Results of Rapid Dynamic Loading and Load Shedding at High Power

2015-09-15
2015-01-2416
An IPTMS hardware facility has been established in the laboratories of the Aerospace Systems Directorate of the Air Force Research Laboratory (AFRL) at Wright-Paterson Air Force Base (WPAFB). This hardware capability was established to analyze the transient behavior of a high power Electrical Power System (EPS) coupled virtually to a Thermal Management System (TMS) under fast dynamic loading conditions. The system incorporates the use of dynamic electrical load, engine emulation, energy storage, and emulated thermal loads operated to investigate dynamics under step load conditions. Hardware architecture and control options for the IPTMS are discussed. This paper summarizes the IPTMS laboratory demonstration system, its capabilities, and preliminary test results.
Technical Paper

Cycle-Based Vapor Cycle System Control and Active Charge Management for Dynamic Airborne Applications

2014-09-16
2014-01-2224
Numerous previous studies have highlighted the potential efficiency improvements which can be provided to aircraft thermal management systems by the incorporation of vapor cycle systems (VCS), either in place of, or in conjunction with, standard air cycle systems, for providing the needed thermal management for aircraft equipment and crews. This paper summarizes the results of a cycle-based VCS control architecture as tested using the Vapor Cycle System Research Facility (VCSRF) in the Aerospace Systems Directorate of the Air Force Research Laboratory at Wright-Patterson Air Force Base. VCSRF is a flexible, dynamic, multi-evaporator VCS which incorporates electronic expansion valves and a variable speed compressor allowing the flexibility to test both components and control schemes. The goal of this facility is to reduce the risk of incorporating VCS into the thermal management systems (TMS) of future advanced aircraft.
Technical Paper

Refrigerant Charge Management and Control for Next-Generation Aircraft Vapor Compression Systems

2013-09-17
2013-01-2241
Vapor compression systems (VCS) offer significant benefits as the backbone for next generation aircraft thermal management systems (TMS). For a comparable lift, VCS offer higher system efficiencies, improved load temperature control, and lower transport losses than conventional air cycle systems. However, broad proliferation of VCS for many aircraft applications has been limited primarily due to maintenance and reliability concerns. In an attempt to address these and other VCS system control issues, the Air Force Research Laboratory has established a Vapor Cycle System Research Facility (VCSRF) to explore the practical application of dynamic VCS control methods for next-generation, military aircraft TMS. The total refrigerant mass contained within the closed refrigeration system (refrigerant charge) is a critical parameter to VCS operational readiness. Too much or too little refrigerant can be detrimental to system performance.
Technical Paper

In-situ Charge Determination for Vapor Cycle Systems in Aircraft

2012-10-22
2012-01-2187
The Air Force Research Laboratory (AFRL), in cooperation with the University of Dayton Research Institute (UDRI) and Fairchild Controls Corporation, is operating an in-house advanced vapor compression refrigeration cycle system (VCS) test rig known as ToTEMS (Two-Phase Thermal Energy Management System). This test rig is dedicated to the study and development of VCS control and operation in support of the Energy Optimized Aircraft (EOA) initiative and the Integrated Vehicle ENergy Technology (INVENT) program. Previous papers on ToTEMS have discussed the hardware setup and some of the preliminary data collected from the system, as well as the first steps towards developing an optimum-seeking control scheme. A key goal of the ToTEMS program is to reduce the risk associated with operating VCS in the dynamic aircraft environment.
Technical Paper

Two Phase Thermal Energy Management System

2011-10-18
2011-01-2584
The Air Force Research Laboratory (AFRL), in cooperation with the University of Dayton Research Institute (UDRI) and Fairchild Controls Corporation, is building a test facility to study the use of advanced vapor cycle systems (VCS) in an expanded role in aircraft thermal management systems (TMS). It is dedicated to the study and development of VCS control and operation in support of the Integrated Vehicle ENergy Technology (INVENT) initiative. The Two Phase Thermal Energy Management System (ToTEMS1) architecture has been shown through studies to offer potential weight, cost, volume and performance advantages over traditional thermal management approaches based on Air Cycle Systems (ACS). The ToTEMS rig will be used to develop and demonstrate a control system that manages the system capacity over both large amplitude and fast transient changes in the system loads.
Technical Paper

Comparative Analysis of Thermal Management Architectures to Address Evolving Thermal Requirements of Aircraft Systems

2008-11-11
2008-01-2905
Recent advances in aircraft technology have raised much concern over the manner in which aircraft thermal management is carried out. These advances range from the incorporation of high-power electronics to transporting thermal loads at high temperatures. These types of technological advances have brought about a necessity for new aircraft thermal management architectures in order to maintain reasonable cost, size, weight, and power requirements of the overall system. The objective of this study is to address the requirements and performance aspects of existing system configurations in an effort to identify inefficiencies and highlight potential areas for improvement. As a result of this study, a new aircraft thermal management architecture, which can best be described as a vapor-compression thermal bus, is proposed as a replacement for existing technology.
X