Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Cylinder Pressure Based Cylinder Charge Estimation in Diesel Engines with Dual Independent Variable Valve Timing

2018-04-03
2018-01-0862
With stricter emission legislations and demands on low fuel consumption, new engine technologies are continuously investigated. At the same time the accuracy in the over all engine control and diagnosis and hence also the required estimation accuracy is tightened. Central for the internal combustion control is the trapped cylinder charge and composition Traditionally cylinder charge is estimated using mean intake manifold pressure and engine speed in a two dimensional lookup table. With the introduction of variable valve timing, two additional degrees of freedom are introduced that makes this approach very time consuming and therefore expensive. Especially if the cam phasers are given large enough authority to offer powerful thermal management possibilities. The paper presents a physical model for estimating in-cylinder trapped mass and residual gas fraction utilizing cylinder pressure measurements, and intake and exhaust valve lift profiles.
Technical Paper

Turbo Speed Estimation Using Fixed-Point Iteration

2017-03-28
2017-01-0591
1 In modern turbocharged engines the power output is strongly connected to the turbocharger speed, through the flow characteristics of the turbocharger. Turbo speed is therefore an important state for the engine operation, but it is usually not measured or controlled directly. Still the control system must ensure that the turbo speed does not exceed its maximum allowed value to prevent damaging the turbocharger. Having access to a turbo speed signal, preferably by a cheap and reliable estimation instead of a sensor, could be beneficial for over speed protection and supervision of the turbocharger. This paper proposes a turbo speed observer that only utilizes the conditions around the compressor and a model for the compressor map. These conditions are either measured or can be more easily estimated from available sensors compared the conditions on the turbine side.
Journal Article

Scalable Component-Based Modeling for Optimizing Engines with Supercharging, E-Boost and Turbocompound Concepts

2012-04-16
2012-01-0713
Downsizing and turbocharging is a proven technology for fuel consumption reduction in vehicles. To further improve the performance, electrified components in the turbocharger arrangements have been proposed, and investigations have shown acceleration improvements, emission reductions, and further fuel conversion efficiency benefits. Simulation tools play an important role in the design process as the interplay between component selection, control strategy, system properties and constraints is very complex. Evaluations are performed with respect to BSFC map, fuel consumption in a drive cycle, acceleration performance, as well as many other aspects. A component-based engine and vehicle model is developed and evaluated to facilitate the process of assessing and optimizing the performance of e.g. engine, charging system, and electrical machine components. Considerations of the execution time and model fidelity have resulted in a choice of models in the mean value engine model family.
X