Refine Your Search

Search Results

Viewing 1 to 9 of 9
Journal Article

Measurement of Loss Pathways in Small, Two-Stroke Internal-Combustion Engines

Abstract The rapid expansion of the market for remotely piloted aircraft (RPA) includes a particular interest in 10-25 kg vehicles for monitoring, surveillance, and reconnaissance. Power-plant options for these aircraft are often 10-100 cm3 internal combustion engines. Both power and fuel conversion efficiency decrease with increasing rapidity in the aforementioned size range. Fuel conversion efficiency decreases from ∼30% for conventional-scale engines (>100 cm3 displacement) to <5% for micro glow-fuel engines (<10 cm3 displacement), while brake mean effective pressure decreases from >10 bar (>100 cm3) to <4 bar (<10 cm3). Based on research documented in the literature, the losses responsible for the increase in the rate of decreasing performance cannot be clearly defined.
Technical Paper

Mapping of Fuel Anti-Knock Requirements for a Small Remotely Piloted Aircraft Engine

Abstract Small remotely piloted aircraft (10-25 kg) powered by internal combustion engines typically operate on motor gasoline, which has an anti-knock index (AKI) of >80. To comply with the single-battlefield-fuel initiative in DoD Directive 4140.25, interest has been increasing in converting the 1-10 kW power plants in the aforementioned size class to run on lower AKI fuels such as diesel and JP-8, which have AKIs of ∼20. It has been speculated that the higher losses (short circuiting, incomplete combustion, heat transfer) that cause these engines to have lower efficiencies than their conventional-scale counterparts may also relax the fuel-AKI requirements of the engines. To investigate that idea, the fuel-AKI requirement of a 3W-55i engine was mapped and compared to that of the engine on the manufacturer-recommended 98 (octane number) ON fuel.
Technical Paper

Characterization of Small-Scale Turbochargers for Unmanned Aerial Systems

Abstract Aircraft engine power is degraded with increasing altitude according to the resultant reduction in air pressure, temperature, and density. One way to mitigate this problem is through turbo-normalization of the air being supplied to the engine. Supercharger and turbocharger components suffer from a well-recognized loss in efficiency as they are scaled down in order to match the reduced mass flow demands of small-scale Internal Combustion Engines. This is due in large part to problems related to machining tolerance limitations, such as the increase in relative operating clearances, and increased blade thickness relative to the flow area. As Internal Combustion Engines decrease in size, they also suffer from efficiency losses owing primarily to thermal loss. This amplifies the importance of maximizing the efficiency of all sub-systems in order to minimize specific fuel consumption and enhance overall aircraft performance.
Journal Article

Combustion Visualization, Performance, and CFD Modeling of a Pre-Chamber Turbulent Jet Ignition System in a Rapid Compression Machine

Abstract Turbulent jet ignition is a pre-chamber ignition enhancement method that produces a distributed ignition source through the use of a chemically active turbulent jet which can replace the spark plug in a conventional spark ignition engine. In this paper combustion visualization and characterization was performed for the combustion of a premixed propane/air mixture initiated by a pre-chamber turbulent jet ignition system with no auxiliary fuel injection, in a rapid compression machine. Three different single orifice nozzles with orifice diameters of 1.5 mm, 2 mm, and 3 mm were tested for the turbulent jet igniter pre-chamber over a range of air to fuel ratios. The performance of the turbulent jet ignition system based on nozzle orifice diameter was characterized by considering both the 0-10 % and the 10-90 % burn durations of the pressure rise due to combustion.
Technical Paper

Comparison of In-Cylinder Pressure Measurement Methods in a Small Spark Ignition Engine

Abstract In this work, in-cylinder pressure was measured in a 55 cc single cylinder, 4.4 kW, two stroke, spark ignition engine. In cylinder pressure measurements were taken using two different pressure transducers to determine if the performance differences between the two transducers are discernible in a small, spark ignition engine. A Kistler brand measuring spark plug was compared to a Kistler brand flush mount high temperature pressure sensor. Both sensors employ piezo-electric pressure sensing elements and were designed to measure indicated mean effective pressure as well as to detect knock at high temperature engine conditions. The pressure sensors were installed and adjusted to ensure cylinder volume after sensor installation matched the engine's original configuration within reasonable manufacturing tolerances. A series of tests at four throttle settings ensued to determine if either device altered the combustion volume or the engine's performance.
Technical Paper

Measuring Scaling Effects in Small Two-Stroke Internal Combustion Engines

Abstract As IC engines decrease in displacement, their cylinder surface area to swept volume ratio increases. Examining power output of IC engines with respect to cylinder surface area to swept volume ratio shows that there is a change in power scaling trends at approximately 1.5 cm−1. At this size, it is suggested that heat transfer from the cylinder becomes the dominant thermal loss mechanism and performance and efficiency characteristics suffer. Furthermore, small IC engines (>1 cm−1) have limited technical performance data compared to IC engines in larger size classes. Therefore, it is critical to establish accurate performance figures for a family of geometrically similar engines in the size class of approximately 1.5 cm−1 in order to better understand the thermal losses that contribute to lower efficiencies in small IC engines. The engines considered in this scaling study were manufactured by 3W Modellmotoren, GmbH.
Technical Paper

Experimental Study of a Pre-Chamber Jet Igniter in a Turbocharged Rotax 914 Aircraft Engine

An experimental study is performed to investigate the possibility of relaxing the octane requirement of a Rotax 914 engine equipped with a pre-chamber jet ignition system. A pre-chamber jet igniter with no auxiliary fuel addition is designed to replace the spark plug in cylinder two of the test engine and is evaluated across engine speeds ranging from 2500 to 5500 RPM. Experiments are performed across both normally aspirated and boosted configurations using regular 87 AKI gasoline fuel. Normally aspirated results at 98 kPa manifold absolute pressure show a 7-10° burn rate improvement with the jet ignition combustion system. Tests to determine the maximum load at optimal combustion phasing (no spark retard) are then conducted by increasing boost pressure up to maximum knock limits.
Technical Paper

Control of Fuel Octane for Knock Mitigation on a Dual-Fuel Spark-Ignition Engine

A two-port fuel-injection (PFI) system is added to a Rotax 914 four-cylinder spark-ignition engine to allow two fuels of different reactivity to be injected simultaneously in order to vary the fuel octane number during engine operation. Engine performance using the dual-fuel PFI system is compared to that using injection of primary-reference-fuel (PRF) blends via a single-PFI system for fuel octane ratings of 50, 70, and 87 octane. The on-the-fly octane control of dual-PFI system is found to control fuel-octane well enough to produce maximum indicated mean effective pressure (IMEPn) results within ± 2% of single-PFI PRF IMEPn results. IMEPn is compared among dual-PFI blends from 20 to 87 octane, neat n-heptane, neat JP-8, and JP-8/isooctane blends. Maximum IMEPn for these fuels is established for the Rotax 914 engine operating from 2500 to 5800 rev/min.
Journal Article

Knock Limit Extension with a Gasoline Fueled Pre-Chamber Jet Igniter in a Modern Vehicle Powertrain

Turbulent Jet Ignition is an advanced spark-initiated pre-chamber combustion system for otherwise standard spark ignition engines. Combustion in the main chamber is initiated by jets of partially combusted (reacting) pre-chamber products which provide a high energy ignition source. The resultant widely distributed ignition sites allow relatively small flame travel distances enabling short combustion durations and high burn rates. Demonstrated benefits include ultra lean operation (λ≻2) at part load and high load knock improvement. This study compared the knock limit of conventional spark ignition and pre-chamber jet ignition combustion with reducing fuel quality in a modern PFI engine platform. Seven PRF blends ranging from 93-60 octane were experimentally tested in a stoichiometric normally aspirated single-cylinder research engine at 1500 rev/min and ~WOT (98 kPa MAP).