Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Technical Paper

Potential Technology to Unclog Hot Day Operational Limit

2010-11-02
2010-01-1788
Fuel has been a popular choice for thermal system designers to use for absorbing aircraft accessory heat load due to its consumable nature. However, the shortcoming of using fuel as a heat sink is the dependency of environmental conditions. This deficiency has plagued the current United States Air Force fleet operation especially performing ground hold and low altitude attack mission during hot days. A Northrop Grumman led industrial team, commissioned by AFRL Power directorate through the INVENT program, has vigorously explored potential technologies to assist air force to enhance the mission capability. The results show various promising technologies not only can extend the hot day operational limit but also can potentially have an unrestricted capability. This paper describes the results from the study performed by Northrop Grumman for an advanced unmanned air vehicle (AUAV) for potential technologies and discusses the modeling approach in support of the analytical process.
Technical Paper

A Method of Shared Regenerative Power Management

2010-11-02
2010-01-1778
The characteristics of large electrical loads encountered in the modern More Electric Aircraft (MEA) require regenerative power processing in order to preserve the power quality within acceptable transient and steady state limits. In an MEA with large active loads and pulsed power demands, it is necessary to employ an architecture that safely and effectively processes regenerative energy resulting from the dynamic loads. For instance, the electrical flight control actuation presents one of the largest regenerative power sources encountered by the generation system. Typical approach is to dissipate this energy through resistors of the power electronics which increases the size and penalizes the aircraft.
X