Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Journal Article

Analysis of Motor Vibration Isolation System with Focus on Mount Resonances for Application to Electric Vehicles

2015-06-15
2015-01-2364
The vibration isolation effectiveness of powertrain mount configurations is examined for electric vehicle application by considering the effect introduced by internal mount resonances. Unlike internal combustion engines where mounts are typically designed only for static support and low frequency dynamics, electric motors have higher excitation frequencies in a range where mount resonances often occur. The problem is first analytically formulated by considering a simple 3-dimensional powertrain system, and the vibration isolation effectiveness significantly deteriorates at the mount resonance(s). It is shown that by modifying the mount shape, the mount resonance(s) can be shifted while maintaining the same static rate, tuning the frequency away from any engine excitation or natural frequencies. Further, internal mount resonances are utilized to improve vibration isolation over a narrow frequency range, using non-identical mounts to split mount resonance peaks.
Technical Paper

Effect of Disc-Pad Contact Modification on the Brake Judder Source Using a Simplified Elasto-Kinematic Model

2013-05-13
2013-01-1907
The brake torque variation (BTV) generated due to geometric irregularities in the disc surface is generally accepted as the fundamental source of brake judder; geometric imperfections or waviness in a disc brake caliper system is often quantified as the disc thickness variation (DTV). Prior research has mainly focused on the vibration path(s) and receiver(s), though such approaches grossly simplify the source (frictional contact) dynamics and often ignore caliper dynamics. Reduction of the effective interfacial contact stiffness could theoretically reduce the friction-induced torque given a specific DTV, although this method would severely increase static compliance and fluid volume displacement. An experiment is designed to quantify the effect of disc-pad contact modifications within a floating caliper design on BTV as well as on static compliance.
X