Refine Your Search

Search Results

Author:
Viewing 1 to 12 of 12
Journal Article

Dynamic Analysis of a Hydraulic Body Mount with Amplitude and Preload Dependence

2017-06-05
2017-01-1909
The application of hydraulic body mounts between a pickup truck frame and cab to reduce freeway hop and smooth road shake has been documented in literature and realized in production vehicles. Previous studies have demonstrated the potential benefits of these devices, often through iterative prototype evaluation. Component dynamic characterization has also shown that these devices exhibit significant dependence to preload and dynamic amplitude; however, analysis of these devices has not addressed these dependences. This paper aims to understand the amplitude and preload dependence on the spectrally-varying properties of a production hydraulic body mount. This double-pumping, three-spring mount construction has a shared compliant element between the two fluid-filled chambers.
Journal Article

Development of Refined Clutch-Damper Subsystem Dynamic Models Suitable for Time Domain Studies

2015-06-15
2015-01-2180
This study examines clutch-damper subsystem dynamics under transient excitation and validates predictions using a new laboratory experiment (which is the subject of a companion paper). The proposed models include multi-staged stiffness and hysteresis elements as well as spline nonlinearities. Several example cases such as two high (or low) hysteresis clutches in series with a pre-damper are considered. First, detailed multi-degree of freedom nonlinear models are constructed, and their time domain predictions are validated by analogous measurements. Second, key damping sources that affect transient events are identified and appropriate models or parameters are selected or justified. Finally, torque impulses are evaluated using metrics, and their effects on driveline dynamics are quantified. Dynamic interactions between clutch-damper and spline backlash nonlinearities are briefly discussed.
Journal Article

Development of a Non-Linear Clutch Damper Experiment Exhibiting Transient Dynamics

2015-06-15
2015-01-2189
Many powertrain structural sub-systems are often tested under steady state conditions on a dynamometer or in a full vehicle. This process (while necessary) is costly and time intensive, especially when evaluating the effect of component properties on transient phenomena, such as driveline clunk. This paper proposes a laboratory experiment that provides the following: 1) a bench experiment that demonstrates transient behavior of a non-linear clutch damper under non-rotating conditions, 2) a process to efficiently evaluate multiple non-linear clutch dampers, and 3) generates benchmark time domain data for validation of non-linear driveline simulation codes. The design of this experiment is based on a previous experimental work on clunk. A commercially available non-linear clutch damper is selected and the experiment is sized accordingly. The stiffness and hysteresis properties of the clutch damper are assumed from the measured quasi-static torque curve provided by the manufacturer.
Journal Article

Modeling of Active and Passive Damping Patches with Application to a Transmission Casing Cover

2015-06-15
2015-01-2261
Combined active and passive damping is a recent trend that can be an effective solution to challenging NVH problems, especially for lightweight vehicle components that demand advanced noise and vibration treatments. Compact patches are of particular interest due to their small size and cost, however, improved modeling techniques are needed at the design stage for such methods. This paper presents a refined modeling procedure for side-by-side active and passive damping patches applied to thin, plate-like, powertrain casing structures. As an example, a plate with fixed boundaries is modeled as this is representative of real-life transmission covers which often require damping treatments. The proposed model is then utilized to examine several cases of active and passive patch location, and vibration reduction is determined in terms of insertion loss for each case.
Journal Article

Comparative Assessment of Frequency Dependent Joint Properties Using Direct and Inverse Identification Methods

2015-06-15
2015-01-2229
Elastomeric joints are utilized in many automotive applications, and exhibit frequency and excitation amplitude dependent properties. Current methods commonly identify only the cross-point joint property using displacement excitation at stepped single frequencies. This process is often time consuming and is limited to measuring a single dynamic stiffness term of the joint stiffness matrix. This study focuses on developing tractable laboratory inverse experiments to identify frequency dependent stiffness matrices up to 1000 Hz. Direct measurements are performed on a commercial elastomer test system and an inverse experiment consisting of an elastic beam (with a square cross section) attached to a cylindrical elastomeric joint. Sources of error in the inverse methodology are thoroughly examined and explained through simulation which include ill-conditioning of matrices and the sensitivity to modeling error.
Journal Article

Dynamic Analysis of Hydraulic Bushings with Measured Nonlinear Compliance Parameters

2015-06-15
2015-01-2355
Hydraulic bushings with amplitude sensitive and spectrally varying properties are commonly used in automotive suspension. However, scientific investigation of their dynamic properties has been mostly limited to linear system based theory, which cannot capture the significant amplitude dependence exhibited by the devices. This paper extends prior literature by introducing a nonlinear fluid compliance term for reduced-order bushing models. Quasi-linear models developed from step sine tests on an elastomeric test machine can predict amplitude dependence trends, but offer limited insight into the physics of the system. A bench experiment focusing on the compliance parameter isolated from other system properties yields additional understanding and a more precise characterization.
Journal Article

Volumetric and Dynamic Performance Considerations of Elastomeric Components

2015-06-15
2015-01-2227
Elastomeric joints such as mounts and suspension bushings undergo broadband excitation and are often characterized through a cross-point dynamic stiffness measurement; yet, at frequencies above 100 Hz for many elastomeric components, the cross- and driving-point dynamic stiffness results significantly deviate. An illustrative example is developed where two different sized mounts, constructed of the same material and are shaped to achieve the same static stiffness behavior, exhibit drastically different dynamic behavior. Physical insight is provided through the development of a reduced order single-degree-of-freedom model where an internal resonance is explained. Next, a method to extract the parameters for the reduced order model from a detailed finite element bushing model is provided.
Journal Article

Dynamic Stiffness of Hydraulic Bushing with Multiple Internal Configurations

2013-05-13
2013-01-1924
Fluid filled bushings are commonly used in vehicle suspension and sub-frame systems due to their spectrally-varying and amplitude-dependent properties. Since the literature on this topic is sparse, a controlled laboratory prototype bushing is first designed, constructed, and instrumented. This device provides different internal combination of long and short flow passages and flow restriction elements. Experiments with sinusoidal displacement excitations are conducted on the prototype, and dynamic stiffness spectra along with fluid chamber pressure responses are measured. The frequency-dependent properties of several commonly seen hydraulic bushing designs are experimentally studied and compared under two excitation amplitudes. Further, new linear time-invariant models with one long and one short flow passages (in parallel or series) are proposed along with the limiting cases.
Journal Article

Comparative Assessment of Multi-Axis Bushing Properties Using Resonant and Non-Resonant Methods

2013-05-13
2013-01-1925
Shaped elastomeric joints such as engine mounts or suspension bushings undergo broadband, multi-axis loading; however, in practice, the elastomeric joint properties are often measured at stepped single frequencies (non-resonant test method). This article helps provide insight into multi-axis properties with new benchmark experiments that are designed to permit direct comparison between system resonant and non-resonant identification methods of the dynamic stiffness matrices of elastomeric joints, including multi-axis (non-diagonal) terms. The joints are constructed with combinations of inclined elastomeric cylinders to control non-diagonal terms in the stiffness matrix. The resonant experiment consists of an elastic metal beam end-supported by elastomeric joints coupling the in-plane transverse and longitudinal beam motion.
Journal Article

Transient Response of Hydraulic Bushing with Inertia Track and Orifice-Like Elements

2013-05-13
2013-01-1927
Hydraulic bushings are widely used in vehicle applications, such as suspension and sub-frame systems, for motion control and noise and vibration isolation. To study the dynamic properties of such devices, a controlled laboratory bushing prototype is designed and fabricated. This device has the capability of varying different combinations of long and short flow passages and flow restriction elements. Transient experiments with step-up and step-down excitations are conducted on the prototype, and the transmitted force responses are measured. The transient properties of several commonly seen hydraulic bushing designs are experimentally studied. Analytical models for bushings with different design features are developed based on the linear system theory. System parameters are then estimated for step responses based on theory and measurements. Finally, the linear models are utilized to analyze the step force measurements, from which some nonlinearities of the bushing system are identified.
Technical Paper

Effect of Disc-Pad Contact Modification on the Brake Judder Source Using a Simplified Elasto-Kinematic Model

2013-05-13
2013-01-1907
The brake torque variation (BTV) generated due to geometric irregularities in the disc surface is generally accepted as the fundamental source of brake judder; geometric imperfections or waviness in a disc brake caliper system is often quantified as the disc thickness variation (DTV). Prior research has mainly focused on the vibration path(s) and receiver(s), though such approaches grossly simplify the source (frictional contact) dynamics and often ignore caliper dynamics. Reduction of the effective interfacial contact stiffness could theoretically reduce the friction-induced torque given a specific DTV, although this method would severely increase static compliance and fluid volume displacement. An experiment is designed to quantify the effect of disc-pad contact modifications within a floating caliper design on BTV as well as on static compliance.
Journal Article

Effect of Local Stiffness Coupling on the Modes of a Subframe-Bushing System

2013-05-13
2013-01-1904
The elastomeric joints (bushings or mounts) in vehicle structural frames are usually described as uncoupled springs (only with diagonal terms) in large scale system models. The off-diagonal terms of an elastomeric joint have been previously ignored as they are often unknown since their properties cannot be measured in a uniaxial elastomer test system. This paper overcomes this deficiency via a scientific study of a laboratory frame that is designed to maintain a high fidelity with real-world vehicle body subframes in terms of natural modes under free boundaries. The steel beam construction of the laboratory frame, with four elastomeric mounts at the corners, permits the development of a highly accurate, yet simple, beam finite element model. This allows for a correlation study between the experiment and model that helps shed light upon the underlying physical phenomenon.
X