Refine Your Search

Search Results

Author:
Viewing 1 to 5 of 5
Technical Paper

Excellent Brake NVH Comfort by Simulation - Use of Optimization Methods to Reduce Squeal Noise

2016-06-15
2016-01-1779
Numerical methods for brake squeal analysis are widely accepted in industry. The use of complex eigenvalue analysis is a successful approach to predict the appearance of squeal noise. Using simulation in an early design stage reduces time to market, saves costs, and improves the physical behavior and robustness of the brake system. State of the art of brake simulation comprises sampling for many parameter sets in a wide range of interesting values. Based on high performance, stability maps can be created in short time containing many results, which gives a deep insight into the brake behavior under varying parameters. An additional benefit of sampling is the possibility to detect parts with high potential for improving the NHV comfort. In the sequel, mathematical optimization methods like topology optimization or shape optimization are used for systematic improvements.
Journal Article

Elaborate Measuring System for Sensitivity Analyses and In-Depth Investigations of a Squealing Brake System

2012-06-13
2012-01-1541
Brake squeal is an elusive problem which has been the subject of investigation for many decades, but there is still a lack of knowledge regarding the excitation mechanisms. New vehicle solutions, for instance the electrical vehicle, will have a lower general noise level. Thus, silent brake systems will gain in importance. To obtain such systems, in-depth investigations of the brake disc/pad contact are required. For these investigations a new sensor has been developed. The guide pins of the caliper are replaced by modified ones which measure the friction force. Additionally, eddy current sensors are installed for contact-free measurement of the pad movement. Furthermore, triaxial acceleration sensors are mounted in the disc vents. Thus, it is possible to evaluate the operational deflection shapes of the disc. Next, an extensive sensibility analysis is performed. Parameters such as environmental conditions, friction coefficient and many others are thereby changed.
Technical Paper

Measuring System Approach to Analyze Brake Squeal Triggering Mechanism

2011-09-18
2011-01-2359
There are several different possibilities to analyze a squealing brake system. The present paper introduces a complex measuring system which is mounted on a complete vehicle axle at a test rig. This system was developed because the previously performed state-of-the-art tests did not allow any insights in the squeal triggering mechanisms. First of all, a frequency analysis was performed. Thereby the main vibrating parts and the directions of the oscillation could be determined during a squeal event. The second was a modal analysis of the vehicle axle, which was necessary to get further insights into the system as well as to verify an existing Finite Element Method model. Through these tests, however, it was not possible to get any insight into the contact area, and therefore it was impossible to determine the squeal triggering mechanism. Because of this limitation, special guide pins were developed, which are able to measure the vibrating friction force.
Technical Paper

Friction Force Measurement at Brake Discs

2011-05-17
2011-01-1576
Experimental researches on brake squeal have been performed since many years in order to get an insight into friction-excited vibrations and squeal triggering mechanisms. There are many different possibilities to analyse brake squeal. The different operating deflection shapes can be detected using e.g. laser vibrometer systems or acceleration sensors. Piezoelectric load cells can be used for the measurement of the normal contact force of the brake pad. The presented test setup measures not only the mean value of the friction force between brake pad and disc at a certain brake pressure, but also the superposed vibration of this force, which only occurs during a squeal event. Therefore the guide pins of the brake caliper are replaced by modified ones. The brake pads are held in position by these pins and the resulting force of the brake torque, hence the friction force, acts on these pins. The shape of the pins is optimized for measuring these forces.
Technical Paper

Numerical and Experimental Parameter Studies on Brake Squeal

2010-10-10
2010-01-1712
This paper deals with the analysis of a complete axle of a passenger car, which shows brake squeal in test runs. The complete brake system including the parts of the corner is studied with two different Finite Element Analysis programs and their brake squeal calculation algorithms. Thereby significant differences between the results of the two simulations and also the experiments are observed. The used element type and the chosen discretisation level influence largely the simulated contact and thereby the overall results. In order to explain these outcomes, the force distribution and the force vectors between disc and pad are analysed. On the one hand tetrahedral elements cause stiffening of the parts and hence of the contact. On the other hand the effort to create hexahedral elements in daily meshing practice is often omitted due to cost reasons. This trend is enforced by the statement of software vendors.
X