Refine Your Search

Search Results

Author:
Viewing 1 to 3 of 3
Technical Paper

Near-Nozzle Structure of Diesel Sprays Affected by Internal Geometry of Injector Nozzle: Visualized by Single-Shot X-ray Imaging

2010-04-12
2010-01-0877
By taking advantage of high-intensity and high-brilliance x-ray beams available at the Advanced Photon Source (APS), ultrafast (150 ps) propagation-based phase-enhanced imaging was developed to visualize high-pressure high-speed diesel sprays in the optically dense near-nozzle region. The sub-ns temporal and μm spatial resolution allows us to capture the morphology of the high-speed fuel sprays traveling at 500 m/s with a negligible motion blur. Both quality and quantitative information about the spray feature can be readily obtained. In the experiment, two types of single-hole nozzles have been used, one with a hydroground orifice inlet and the other with a sharp one. Within 3 mm from the nozzle, the sprays from these nozzles behave differently, ranging from laminar flow with surface instability waves to turbulent flow. The sprays are correlated with the nozzle internal geometry, which provides practical information for both nozzle design and supporting numerical simulation models.
Technical Paper

Ultrafast and Quantitative X-Tomography and Simulation of Hollow-Cone Gasoline Direct-Injection Sprays

2007-07-23
2007-01-1847
Gasoline direct injection (GDI) has the potential to greatly improve internal combustion engine performance through precise control of the injection rate, timing, and combustion of the fuel. A thorough characterization of the hydrodynamics of fuel injection has to come from a precise, quantitative analysis of the sprays, especially in the near-nozzle region. A lack of knowledge of the fuel-spray dynamics has severely limited computational modeling of the sprays and design of improved injection systems. Previously, the structure and dynamics of highly transient fuel sprays have never been visualized or reconstructed in three dimensions (3D) due to numerous technical difficulties. By using an ultrafast x-ray detector and intense monochromatic x-ray beams from synchrotron radiation, the fine structures and dynamics of 1-ms GDI fuel sprays from an outwardly opening nozzle were elucidated by a newly developed, ultrafast, microsecond computed microtomography (CT) technique.
Technical Paper

Determination of Diesel Spray Axial Velocity Using X-Ray Radiography

2007-04-16
2007-01-0666
Present knowledge of the velocity of the fuel in diesel sprays is quite limited due to the obscuring effects of fuel droplets, particularly in the high-density core of the spray. In recent years, x-ray radiography, which is capable of penetrating dense fuel sprays, has demonstrated the ability to probe the structure of the core of the spray, even in the dense near-nozzle region. In this paper, x-ray radiography data was used to determine the average axial velocity in diesel sprays as a function of position and time. Here, we report the method used to determine the axial velocity and its application to three common-rail diesel sprays at 250 bar injection pressure. The data show that the spray velocity does not reach its steady state value near the nozzle until approximately 200 μs after the start of injection. Moreover, the spray axial velocity decreases as one moves away from the spray orifice, suggesting transfer of axial momentum to the surrounding ambient gas.
X