Refine Your Search

Search Results

Author:
Viewing 1 to 4 of 4
Technical Paper

Possibilities and Limits of 1D CFD Simulation Methodology for the Layout of 2-Stroke GDI Combustion System

2010-09-28
2010-32-0017
The development process of 2-stroke engines is characterized by limited CFD investigations in combination with long-term development phases on the test bench with high prototype costs. To reduce the costs and to realize shorter development time together with a higher prediction quality of the engine potential, a higher implementation level of 1D and 3D simulation tools into the development process is necessary. This publication outlines the 1D simulation methods in the layout phase of GDI combustion processes of 2-stroke engine categories. By means of conceptual investigations, the demands, the potential and the limits of 1D CFD simulation methodology are defined. Using a comparison between 1D and 3D or 1D/3D coupled simulation methods the limits of solely 1D simulation are shown. For advanced simulation tasks with a higher demand for prediction quality, the entire engine is simulated in 1D, whereas special parts of the engine design are simulated in a 3D model.
Technical Paper

CFD Simulation of a Real World High-Performance Two Stroke Engine with Use of a Multidimensional Coupling Methodology

2008-09-09
2008-32-0042
CFD simulation (Computational Fluid Dynamics) is a state of the art tool for the development of internal combustion engines, especially for internal mixture preparation, scavenging process and combustion. Simulation offers an array of information in the early development phase without the need of building a prototype engine. It shortens the development time, reduces the number of prototypes and therewith test bench costs. In previous investigations [SAE 2005-32-0099] and [SAE 2007-32-0030] a new coupling methodology which bases on the combination of three-dimensional (3D), one-dimensional (1D), and zero-dimensional (0D) CFD calculation has been presented. This methodology uses a new multidimensional interface technology and is able to handle 3D-0D, 3D-1D and 3D-3D connections. The special feature of this methodology is the capability of being placed on any position in the 3D CFD mesh.
Technical Paper

A Multidimensional Interface for the Predictive CFD Simulation of the 2-Stroke Engine

2006-11-13
2006-32-0059
The two stroke engine has a wide range of application, especially in the field of recreational vehicles, handheld products and small two-wheelers. This is due to the advantages of the two stroke working principle: high power density, low weight, and low costs. In order to reduce the system-inherent disadvantages of the loop-scavenged two stroke engine developments using latest methods are necessary. One of these methods is the CFD simulation of the scavenging process, the high pressure cycle and the injection process. Reliable predictive simulation in the early development phase of a new engine is required to shorten the development time and to reduce prototype and test bench costs. In previous investigations (1) [SAE 2005-32-0099; JSAE 20056552] the strategies for the simulation and the requirements for a predictive simulation were discussed. Finally a new methodology which bases on the combination of 3-dimensional (3D) and 0/1-dimensional (0/1D) CFD simulation was presented.
Technical Paper

Predictive Simulation Strategies for the 2-Stroke Scavenging Process within the Scope of the Development Process

2005-10-12
2005-32-0099
The wide variety of applications of the loop scavenged 2-stroke engine is based on 3 advantages which emerge from the 2-stroke working principle: the high power density, the low weight, and the low production costs. An important aim of research activities in the field of 2-stroke engines is to optimize these advantages while minimizing the known disadvantages of high emissions and fuel consumption. Important tasks of the research work within the development process are the prediction of power and emissions of engine concepts and the simulation with special regard to the scavenging process and the high pressure cycle. In this area of research two state of the art simulation approaches exist. The first one is a detailed simulation of the scavenging and combustion process which is necessary to understand and optimize the fundamentals of the 2-stroke engine.
X