Refine Your Search

Search Results

Technical Paper

Effect of Common Rail Pressure on the Relationship between Efficiency and Particulate Matter Emissions at NOx Parity

2012-04-16
2012-01-0430
The effect of fuel injection pressure on the brake specific fuel consumption (BSFC) and brake specific particulate matter (BSPM) emissions at NOx parity (constant NOx emissions level) was investigated under different conditions of engine speed and load using a 2.5L DDC/VM-Motori common-rail, turbocharged, direct injection (DI), light-duty diesel engine. NOx parity at varying conditions of speed, load, and fuel injection pressure was achieved by changing the injection strategy and timing. The results of these analyses confirmed the well-established trends that soot emissions reduce with an increase in rail pressure at the expense of increasing NOx emissions. With an increase in engine speed (at constant load and NOx parity), it was observed that BSFC, CO, CO₂, and hydrocarbon emissions decreased, while BSPM decreased initially and increased later on. Increasing the fuel injection pressure resulted in an increase in BSFC, CO, CO₂, and hydrocarbon emissions.
X