Criteria

Text:
Display:

Results

Viewing 1 to 10 of 10
2015-04-14
Technical Paper
2015-01-0905
Seyed Hadavi, Buland Dizayi, Hu Li, Alison Tomlin
Abstract To maximize CO2 reduction, refined straight used cooking oils were used as a fuel in Heavy Goods Vehicles (HGVs) in this research. The fuel is called C2G Ultra Biofuel (C2G: Convert to Green Ltd) and is a fully renewable fuel made as a diesel replacement from processed used cooking oil, used directly in diesel engines specifically modified for this purpose. This is part of a large demonstration project involving ten 44-tonne trucks using C2G Ultra Biofuel as a fuel to partially replace standard diesel fuels. A dual fuel tank containing both diesel and C2G Ultra Biofuel and an on-board fuel blending system-Bioltec system was installed on each vehicle, which is able to heat the C2G Ultra Biofuel and automatically determine the required blending ratio of diesel and C2G Ultra Biofuel according to fuel temperature and engine load. The engine was started with diesel and then switched to C2G Ultra Biofuel under appropriate conditions.
2014-10-13
Technical Paper
2014-01-2727
Hu Li, Laura Campbell, Seyed Hadavi, Job Gava
Abstract Direct use of straight vegetable oil based biofuels in diesel engines without trans-esterification can deliver more carbon reductions compared to its counterpart biodiesel. However, the use of high blends of straight vegetable oils especially used cooking oil based fuels in diesel engines needs to ensure compatible fuel economy with PD (Petroleum Diesel) and satisfactory operational performance. There are two ways to use high blends of SVO (Straight Vegetable Oil) in diesel engines: fixed blending ratio feeding to the engine and variable blending ratio feeding to the engine. This paper employed the latter using an on-board blending system-Bioltec system, which is capable of heating the vegetable oils and feeding the engine with neat PD or different blends of vegetable oils depending on engine load and temperature.
2014-04-01
Journal Article
2014-01-1948
Hu Li, Jim Ebner, Peipei Ren, Laura Campbell, Buland Dizayi, Seyed Hadavi
In order to improve energy supply diversity and reduce carbon dioxide emissions, sustainable bio-fuels are strongly supported by EU and other governments in the world. While the feedstock of biofuels has caused a debate on the issue of sustainability, the used cooking oil (UCO) has become a preferred feedstock for biodiesel manufacturers. However, intensive energy consumption in the trans-esterification process during the UCO biodiesel production has significantly compromised the carbon reduction potentials and increased the cost of the UCO biodiesel. Moreover, the yield of biodiesel is only ∼90% and the remaining ∼10% feedstock is wasted as by-product glycerol. Direct use of UCO in diesel engines is a way to maximize its carbon saving potentials.
2013-10-14
Technical Paper
2013-01-2528
Seyed Ali Hadavi, Hu Li, Gordon Andrews, Grzegorz przybyla, Buland Dizayi, Ahmad Khalfan
A cold start Euro 3 1.8 litre Diesel vehicle with an oxidation catalyst was used to investigate real world exhaust emissions over a driving cycle that included urban cold start congested traffic driving conditions. The aim was to identity those aspects of cold start real world driving responsible for higher emissions than in test cycles. Higher real world emissions may contribute to the problem of air quality in urban areas, which has not improved in quality in proportion to the reduced in vehicle exhaust emissions. Diesel, B50 and B100 fuel were compared to determine if real world driving effects were worse for B50 and B100 fuels due to their lower volatility and higher viscosity. The biofuel was WRME, derived from waste rape seed cooking oil. A multifunctional additive package was added to the biofuel at 800ppm to control fuel injector deposit formation. Gaseous emissions were monitored using an on-board heated Temet FTIR exhaust emission analyzer.
2013-04-08
Technical Paper
2013-01-1145
Seyed Hadavi, Gordon E. Andrews, Hu Li, Grzegorz Przybyla, Mohammadmohsen Vazirian
EU environmental law requires 30 ozone precursor volatile organic compounds (VOCs) to be measured for urban air quality control. In this study, 28 ozone precursor VOCs were measured at a rate of 0.5 Hz by an in-vehicle FTIR emission measurement system along with other VOCs. The vehicle used was a Euro 3 emission compliant diesel van. The test vehicle was started from a cold ambient temperature soak and driven under real world urban driving conditions. Diesel and B100 (100% Biodiesel) were compared using the same repeat journeys. The VOC emissions and OFP (ozone formation potential) were investigated as a function of engine warm up and ambient temperatures during cold start. The exhaust temperatures were measured along with the exhaust emissions. The temperature and duration of light off of the catalyst for VOC were monitored and showed a cold start period to catalyst light off that was considerably longer than would occur on the NEDC (New European Driving Cycle).
2013-04-08
Technical Paper
2013-01-1514
Grzegorz Przybyla, Seyed Hadavi, Hu Li, Gordon E. Andrews
The transport sector is one of the major contributors to greenhouse gas emissions. This study investigated three greenhouse gases emitted from road transport using a probe vehicle: CO₂, N₂O and CH₄ emissions as a function temperature. It should be highlighted that methane is a greenhouse gas that similarly to carbon dioxide contributes to global warming and climate change. An oxidation catalyst was used to investigate CO₂, N₂O and CH₄ GHG emissions over a real-world driving cycle that included urban congested traffic and extra-urban driving conditions. The results were determined under hot start conditions, but in congested traffic the catalyst cooled below its light-off temperature and this resulted in considerable N₂O emissions as the oxidation catalyst temperature was in the N₂O formation band. This showed higher N₂O during hot start than for diesel fuel and B100 were compared. The B100 fuel was Fatty Acid Methyl Ester (FAME), derived from waste cooking oil, which was mainly RME.
2012-09-10
Journal Article
2012-01-1674
Seyed Ali Hadavi, Hu Li, Grzegorz Przybyla, Ross Jarrett, Gordon Andrews
A Euro 3 1.8-liter diesel vehicle with an oxidation catalyst was used to investigate real-world exhaust emissions over a real-world driving cycle that included urban congested traffic and extra-urban driving conditions. Diesel fuel and B100 were compared. The B100 fuel was Fatty Acid Methyl Ester (FAME), derived from waste cooking oil, which was mainly RME. A multifunctional additive package was added at 800 ppm to control fuel injector deposit formation. Gaseous emissions were monitored using an on-board heated Temet FTIR exhaust emission analyzer, which can measure 52 species at a rate of 0.5 Hz. A Horiba on board emissions measuring system was also used (OBS 1300), which measures the exhaust mass flow rate together with air/fuel ratio.
2012-04-16
Technical Paper
2012-01-1075
Jayne Windeatt, Gemma Brady, Philippa Usher, Hu Li, Ali Hadavi
This study uses on-board measurement systems to analyze emissions from a diesel engine vehicle during the cold start period. An in-vehicle FTIR (Fourier Transform Inferred) spectrometer and a Horiba on-board measurement system (OBS-1300) were installed on a EURO3 emission-compliant 1.8 TDCi diesel van, in order to measure the emissions. Both regulated and non-regulated emissions were measured, along with an analysis of the NO/NO₂ split. A VBOX GPS system was used to log coordinates and road speed for driving parameters and emission analysis. Thermal couples were installed along the exhaust system to measure the temperatures of exhaust gases during cold start. The real-time fuel consumption was measured. The study also looks at the influence of velocity on emissions of hydrocarbons (HCs) and NOx. The cold start period of an SI-engine-powered vehicle, was typically around 200 seconds in urban driving conditions.
2012-04-16
Technical Paper
2012-01-0435
Seyed Ali. Hadavi, Hu Li, Patrick Biller, Amanda Lea-Langton, Gordon Andrews, Grzegorz Przybyla
Pure rape seed oil (RSO), as coded BO100 (BO: Bio-Oil) to distinguish from biodiesel was investigated for a range of intake oxygen levels from 21 to 24%. RSO can have deposit problems in both the fuel injector and piston crown and elevated intake oxygen levels potentially could control these by promoting their oxidation. Increased intake oxygen elevates the peak temperature and this promotes the oxidation of soot and volatile organic compounds. The effect of this on particle mass and on the particle size distribution was investigated using a 6-cylinder 6-liter Perkins Phaser Euro 2 DI diesel engine. The tests were conducted at 47 kW brake power output at 1500 rpm. The particle size distribution was determined from the engine-out exhaust sample using a Dekati microdilution system and nano-SMPS analyzer. The results showed that for air RSO had higher particle mass than diesel and that this mass decreased as the oxygen level was increased.
2009-11-02
Journal Article
2009-01-2642
Hu Li, Amanda Lea-Langton, Patrick Biller, Gordon E. Andrews, Seyed Hadavi, Alex Charlton, Paul Richards
This work investigates the effect of a multifunctional diesel fuel additive package used with RapeSeed Oil (RSO) as a fuel in a DI heavy duty diesel engine. The effects on fuel injectors’ cleanliness were assessed. The aim was to maintain combustion performance and preventing the deterioration of exhaust emissions associated with injector deposit build up. Two scenarios were investigated: the effect of deposit clean-up by a high dose of the additive package; and the effect of deposit prevention using a moderate dose of the additive package. Engine combustion performance and emissions were compared for each case against use of RSO without any additive. The engine used was a 6 cylinder, turbocharged, intercooled Perkins Phaser Engine, fitted with an oxidation catalyst and meeting the Euro II emissions limits. The tests were conducted under steady state conditions of 23kW and 47kW power output at an engine speed of 1500 rpm.
Viewing 1 to 10 of 10