Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Injector Fouling Performance and Solubility of GTL Diesel Dosed with Zinc

2013-04-08
2013-01-1697
The success of modern diesel passenger cars is, to some extent, attributable to the advent of common rail diesel injection technology. Today almost all new diesel engines use this technology which is characterised by high fuel injection pressure and very small diameter nozzle holes. The industry rapidly developed a new test procedure to assess a fuel's propensity to cause injector fouling and also to assess the ability of additives to clean and to keep such injectors clean. The CEC F-98-08 DW10 test procedure was approved in March 2008 by the CEC and is now considered an industry standard test method. The test method requires 1ppm zinc to be dosed into all test fuels in order to accelerate injector fouling. This paper presents DW10 test results for gas-to-liquids (GTL) diesel. A similar test method, using a different engine, was developed in-house and showed good correlation with the DW10 test.
Journal Article

Iso-Stoichiometric Ternary Blends of Gasoline, Ethanol and Methanol: Investigations into Exhaust Emissions, Blend Properties and Octane Numbers

2012-09-10
2012-01-1586
Iso-stoichiometric ternary blends - in which three-component blends of gasoline, ethanol and methanol are configured to the same stoichiometric air-fuel ratio as an equivalent binary ethanol-gasoline blend - can function as invisible "drop-in" fuels suitable for the existing E85/gasoline flex-fuel vehicle fleet. This has been demonstrated for the two principal means of detecting alcohol content in such vehicles, which are considered to be a virtual, or software-based, sensor, and a physical sensor in the fuel line. Furthermore when using such fuels the tailpipe CO₂ emissions are essentially identical to those found when the vehicle is operated on E85. Because of the fact that methanol can be made from a wider range of feed stocks than ethanol and at a cheaper price, these blends then provide opportunities to improve energy security, to reduce greenhouse gas emissions and to produce a fuel blend which could potentially be cheaper on a cost-per-unit-energy basis than gasoline or diesel.
X