Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Technical Paper

Assessment of the Vehicle's Interior Wind Noise Due to Measurement of Exterior Flow Quantities

2014-06-30
2014-01-2050
The optimal styling of the exterior surface of a vehicle and its suspension system have a direct impact on interior wind noise. Both are determined in early project phases when no hardware prototype is available. Turbulent flows produce both external pressure fluctuations at the vehicle shell, known as hydrodynamic excitation, and sound waves, known as acoustic excitation. Hydrodynamic and acoustic sound sources are evaluated separately and relative to each other in the frequency domain in order to perform evaluations of different body shapes. The technical aim of the presented work is to investigate how acoustic quantities measured at the outside of a vehicle can be used to assess the influence of styling modifications to interior sound pressure level. The methodology is required to be capable of being integrated into the serial development process and therefore be quickly applicable.
Technical Paper

Reducing a Sports Activity Vehicle's Aeroacoustic Noise using a Validated CAA Process

2012-06-13
2012-01-1552
Developing a low interior noise level of vehicles is a big challenge - even a greater one if one thinks about aeroacoustics. Aeroacoustic noise and its origins are usually identified with the help of prototypes when exterior design changes or the replacement of exterior parts like side mirrors are very limited. However, computational aeroacoustic (CAA) methods in virtual project phases offer more design options for the vehicle's geometric shape. The early consideration of aeroacoustic relevant design changes helps to keep project costs low by avoiding tool changes. This paper describes MAGNA STEYR's virtual aeroacoustic process starting from standardized model generation and simulation of wind noise, including the validation of computational results via comparison with measurement data gathered in an acoustic wind tunnel. The simulations are carried out using the commercial CAA code “PowerFLOW” (Exa) based on the Lattice-Boltzmann method.
X