Criteria

Text:
Author:
Display:

Results

Viewing 1 to 5 of 5
2016-04-05
Journal Article
2016-01-0316
Dorin Drignei, Zissimos Mourelatos, Ervisa Kosova, Jingwen Hu, Matthew Reed, Jonathan Rupp, Rebekah Gruber, Risa Scherer
Abstract We have recently obtained experimental data and used them to develop computational models to quantify occupant impact responses and injury risks for military vehicles during frontal crashes. The number of experimental tests and model runs are however, relatively small due to their high cost. While this is true across the auto industry, it is particularly critical for the Army and other government agencies operating under tight budget constraints. In this study we investigate through statistical simulations how the injury risk varies if a large number of experimental tests were conducted. We show that the injury risk distribution is skewed to the right implying that, although most physical tests result in a small injury risk, there are occasional physical tests for which the injury risk is extremely large. We compute the probabilities of such events and use them to identify optimum design conditions to minimize such probabilities.
2014-04-01
Journal Article
2014-01-0717
Igor Baseski, Dorin Drignei, Zissimos Mourelatos, Monica Majcher
We propose a new metamodeling method to characterize the output (response) random process of a dynamic system with random parameters, excited by input random processes. The metamodel can be then used to efficiently estimate the time-dependent reliability of a dynamic system using analytical or simulation-based methods. The metamodel is constructed by decomposing the input random processes using principal components or wavelets and then using a few simulations to estimate the distributions of the decomposition coefficients. A similar decomposition is also performed on the output random process. A kriging model is then established between the input and output decomposition coefficients and subsequently used to quantify the output random process corresponding to a realization of the input random parameters and random processes. What distinguishes our approach from others in metamodeling is that the system input is not deterministic but random.
2013-04-08
Technical Paper
2013-01-1385
Dorin Drignei, Zissimos Mourelatos, Vijitashwa Pandey, Igor Baseski, Michael Kokkolaras, Amandeep Singh, David Lamb
Design optimization often relies on computational models, which are subjected to a validation process to ensure their accuracy. Because validation of computer models in the entire design space can be costly, we have previously proposed an approach where design optimization and model validation, are concurrently performed using a sequential approach with variable-size local domains. We used test data and statistical bootstrap methods to size each local domain where the prediction model is considered validated and where design optimization is performed. The method proceeds iteratively until the optimum design is obtained. This method however, requires test data to be available in each local domain along the optimization path. In this paper, we refine our methodology by using polynomial regression to predict the size and shape of a local domain at some steps along the optimization process without using test data.
2012-04-16
Journal Article
2012-01-0226
Dorin Drignei, Zissimos Mourelatos, Vijitashwa Pandey, Michael Kokkolaras
Design optimization often relies on computational models, which are subjected to a validation process to ensure their accuracy. Because validation of computer models in the entire design space can be costly, a recent approach was proposed where design optimization and model validation were concurrently performed using a sequential approach with both fixed and variable-size local domains. The variable-size approach used parametric distributions such as Gaussian to quantify the variability in test data and model predictions, and a maximum likelihood estimation to calibrate the prediction model. Also, a parametric bootstrap method was used to size each local domain. In this article, we generalize the variable-size approach, by not assuming any distribution such as Gaussian. A nonparametric bootstrap methodology is instead used to size the local domains. We expect its generality to be useful in applications where distributional assumptions are difficult to verify, or not met at all.
2011-04-12
Journal Article
2011-01-0243
Dorin Drignei, Zissimos Mourelatos, Michael Kokkolaras, Jing Li, Grzegorz Koscik
A common approach to the validation of simulation models focuses on validation throughout the entire design space. A more recent methodology validates designs as they are generated during a simulation-based optimization process. The latter method relies on validating the simulation model in a sequence of local domains. To improve its computational efficiency, this paper proposes an iterative process, where the size and shape of local domains at the current step are determined from a parametric bootstrap methodology involving maximum likelihood estimators of unknown model parameters from the previous step. Validation is carried out in the local domain at each step. The iterative process continues until the local domain does not change from iteration to iteration during the optimization process ensuring that a converged design optimum has been obtained.
Viewing 1 to 5 of 5