Refine Your Search

Search Results

Author:
Viewing 1 to 15 of 15
Technical Paper

Development of Benchmarking Methods for Electric Vehicle Drive Units

2024-04-09
2024-01-2270
As part of the U.S. Environmental Protection Agency’s (EPA’s) continuing assessment of advanced light-duty automotive technologies in support of regulatory and compliance programs, a development project was started to study various test methods to benchmark Electric Drive Units (EDUs) consisting of an electric motor, inverter and a speed-reduction gearset. Several test methods were identified for consideration, including both in-vehicle testing of the complete EDU and stand-alone testing of the EDU and its subcomponents after removal from the vehicle. In all test methods explored, sweeps of speed and torque test points were conducted while collecting key EDU data required to determine efficiency, including motor torque and speed, direct current (DC) battery voltage and current into the inverter, and three-phase alternating current (AC) phase voltages and currents out of the inverter and into the electric motor.
Technical Paper

Using ALPHA v3.0 to Simulate Conventional and Electrified GHG Reduction Technologies in the MY2022 Light-Duty Fleet

2024-04-09
2024-01-2710
As GHG and fuel economy regulations of light-duty vehicles have become more stringent, advanced emissions reduction technology has extensively penetrated the US light-duty vehicle fleet. This new technology includes not only advanced conventional engines and transmissions, but also greater adoption of electrified powertrains. In 2022, electrified vehicles – including mild hybrids, strong hybrids, plug-ins, and battery electric vehicles – made up nearly 17% of the US fleet and are on track to further increase their proportion in subsequent years. The Environmental Protection Agency (EPA) has previously used its Advanced Light-Duty Powertrain and Hybrid Analysis (ALPHA) full vehicle simulation tool to evaluate the greenhouse gas (GHG) emissions of light-duty vehicles. ALPHA contains a library of benchmarked powertrain components that can be matched to specific vehicles to explore GHG emissions performance.
Technical Paper

Benchmarking a 2018 Toyota Camry UB80E Eight-Speed Automatic Transmission

2020-04-14
2020-01-1286
As part of the U.S. Environmental Protection Agency’s (EPA’s) continuing assessment of advanced light-duty automotive technologies in support of regulatory and compliance programs, a 2018 Toyota Camry front wheel drive eight-speed automatic transmission was benchmarked. The benchmarking data were used as inputs to EPA’s Advanced Light-duty Powertrain and Hybrid Analysis (ALPHA) vehicle simulation model to estimate GHG emissions from light-duty vehicles. ALPHA requires both detailed engine fuel consumption maps and transmission torque loss maps. EPA’s National Vehicle and Fuels Emissions Laboratory has developed a streamlined, cost-effective in-house method of transmission testing, capable of gathering a dataset sufficient to characterize transmissions within ALPHA. This testing methodology targets the range of transmission operation observed during vehicle testing over EPA’s city and highway drive cycles.
Technical Paper

Motor Vehicle Emission Control Quality Monitoring for On-Road Driving: Dynamic Signature Recognition of NOx & NH3 Emissions

2020-04-14
2020-01-0372
Motor vehicle emission testing during on-road driving is important to assess a vehicle’s exhaust emission control design, its compliance with Federal regulations and its impact on air quality. The U.S. Environmental Protection Agency (EPA) has been developing new approaches to screen the characteristics of vehicle dynamic emission control behaviors (its operating signature) while driving both on-road and on-dynamometer. The so-called “signature device” used for this testing is equipped with an O2/NOx sensor, thermocouple and GPS to record dynamic exhaust NOx concentration, air fuel ratio-controlled tailpipe lambda (λ), tailpipe temperature and vehicle speed (acceleration). In the early EPA research, signature screening was used to characterize a vehicle’s PCM control behaviors (cause/effect bijectivity), which help distinguish operation in normal control state-space and abnormal state-space.
Journal Article

Benchmarking a 2018 Toyota Camry 2.5-Liter Atkinson Cycle Engine with Cooled-EGR

2019-04-02
2019-01-0249
As part of the U.S. Environmental Protection Agency’s (EPA’s) continuing assessment of advanced light-duty automotive technologies in support of regulatory and compliance programs, a 2018 Toyota Camry A25A-FKS 4-cylinder, 2.5-liter, naturally aspirated, Atkinson Cycle engine with cooled exhaust gas recirculation (cEGR) was benchmarked. The engine was tested on an engine dynamometer with and without its 8-speed automatic transmission, and with the engine wiring harness tethered to a complete vehicle parked outside of the test cell. Engine and transmission torque, fuel flow, key engine temperatures and pressures, onboard diagnostics (OBD) data, and Controller Area Network (CAN) bus data were recorded. This paper documents the test results under idle, low, medium, and high load engine operation. Motoring torque, wide open throttle (WOT) torque and fuel consumption are measured during transient operation using both EPA Tier 2 and Tier 3 test fuels.
Journal Article

Benchmarking a 2016 Honda Civic 1.5-Liter L15B7 Turbocharged Engine and Evaluating the Future Efficiency Potential of Turbocharged Engines

2018-04-03
2018-01-0319
As part of the U.S. Environmental Protection Agency’s (EPA’s) continuing assessment of advanced light-duty (LD) automotive technologies to support the setting of appropriate national greenhouse gas (GHG) standards and to evaluate the impact of new technologies on in-use emissions, a 2016 Honda Civic with a 4-cylinder 1.5-liter L15B7 turbocharged engine and continuously variable transmission (CVT) was benchmarked. The test method involved installing the engine and its CVT in an engine-dynamometer test cell with the engine wiring harness tethered to its vehicle parked outside the test cell. Engine and transmission torque, fuel flow, key engine temperatures and pressures, and onboard diagnostics (OBD)/Controller Area Network (CAN) bus data were recorded.
Technical Paper

Evaluation of Emerging Technologies on a 1.6 L Turbocharged GDI Engine

2018-04-03
2018-01-1423
Low-pressure loop exhaust gas recirculation (LP- EGR) combined with higher compression ratio, is a technology package that has been a focus of research to increase engine thermal efficiency of downsized, turbocharged gasoline direct injection (GDI) engines. Research shows that the addition of LP-EGR reduces the propensity to knock that is experienced at higher compression ratios [1]. To investigate the interaction and compatibility between increased compression ratio and LP-EGR, a 1.6 L Turbocharged GDI engine was modified to run with LP-EGR at a higher compression ratio (12:1 versus 10.5:1) via a piston change. This paper presents the results of the baseline testing on an engine run with a prototype controller and initially tuned to mimic an original equipment manufacturer (OEM) baseline control strategy running on premium fuel (92.8 anti-knock index).
Technical Paper

Testing and Benchmarking a 2014 GM Silverado 6L80 Six Speed Automatic Transmission

2017-11-17
2017-01-5020
As part of its midterm evaluation of the 2022-2025 light-duty greenhouse gas (GHG) standards, the Environmental Protection Agency (EPA) has been acquiring fuel efficiency data from testing of recent engines and vehicles. The benchmarking data are used as inputs to EPA’s Advanced Light Duty Powertrain and Hybrid Analysis (ALPHA) vehicle simulation model created to estimate GHG emissions from light-duty vehicles. For complete powertrain modeling, ALPHA needs both detailed engine fuel consumption maps and transmission efficiency maps. EPA’s National Vehicle and Fuels Emissions Laboratory has previously relied on contractors to provide full characterization of transmission efficiency maps. To add to its benchmarking resources, EPA developed a streamlined more cost-effective in-house method of transmission testing, capable of gathering a dataset sufficient to broadly characterize transmissions within ALPHA.
Journal Article

Fleet-Level Modeling of Real World Factors Influencing Greenhouse Gas Emission Simulation in ALPHA

2017-03-28
2017-01-0899
The Environmental Protection Agency’s (EPA’s) Advanced Light-Duty Powertrain and Hybrid Analysis (ALPHA) tool was created to estimate greenhouse gas (GHG) emissions from light-duty vehicles. ALPHA is a physics-based, forward-looking, full vehicle computer simulation capable of analyzing various vehicle types with different powertrain technologies, showing realistic vehicle behavior, and auditing of internal energy flows in the model. In preparation for the midterm evaluation (MTE) of the 2017-2025 light-duty GHG emissions rule, ALPHA has been updated utilizing newly acquired data from model year 2013-2016 engines and vehicles. Simulations conducted with ALPHA provide data on the effectiveness of various GHG reduction technologies, and reveal synergies that exist between technologies. The ALPHA model has been validated against a variety of vehicles with different powertrain configurations and GHG reduction technologies.
Technical Paper

Estimating GHG Reduction from Combinations of Current Best-Available and Future Powertrain and Vehicle Technologies for a Midsized Car Using EPA’s ALPHA Model

2016-04-05
2016-01-0910
The Environmental Protection Agency’s (EPA’s) Advanced Light-Duty Powertrain and Hybrid Analysis (ALPHA) tool was created to estimate greenhouse gas (GHG) emissions from light-duty vehicles[1]. ALPHA is a physics-based, forward-looking, full vehicle computer simulation capable of analyzing various vehicle types with different powertrain technologies, showing realistic vehicle behavior, and auditing of all internal energy flows in the model. The software tool is a MATLAB/Simulink based desktop application. In preparation for the midterm evaluation of the light-duty GHG emission standards for model years 2022-2025, EPA is refining and revalidating ALPHA using newly acquired data from model year 2013-2015 engines and vehicles.
Journal Article

Investigating the Effect of Advanced Automatic Transmissions on Fuel Consumption Using Vehicle Testing and Modeling

2016-04-05
2016-01-1142
In preparation for the midterm evaluation (MTE) of the 2022-2025 Light-Duty Greenhouse Gas (LD GHG) emissions standards, the Environmental Protection Agency (EPA) is refining and revalidating their Advanced Light-Duty Powertrain and Hybrid Analysis (ALPHA) tool using newly acquired data from model year 2013-2015 engines and vehicles. ALPHA is a physics-based, forward-looking, full vehicle computer simulation capable of analyzing various vehicle types with different powertrain technologies, showing realistic vehicle behavior, and auditing of all internal energy flows in the model. As part of the validation of ALPHA, the EPA obtained model year 2014 Dodge Chargers equipped with 3.6 liter V6 engines and either a NAG1 five-speed automatic transmission or an 845RE eight-speed automatic transmission.
Journal Article

Design and Demonstration of EPA's Integrated Drive Module for Commercial Series Hydraulic Hybrid Trucks and Buses

2015-09-29
2015-01-2850
The United States Environmental Protection Agency's (EPA) National Center for Advanced Technology (NCAT), located at its National Vehicle and Fuel Emissions Laboratory in Ann Arbor, Michigan, has been a global leader in development and demonstration of low-greenhouse gas emitting, highly fuel efficient series hydraulic hybrid drivetrain technologies. Advances in these exciting new technologies have stimulated industry to begin manufacturing hydraulic hybrids for both commercial truck and non-road equipment markets. Development activities are continuing for other markets, including light-duty vehicles. Given the commercial emergence of these low-greenhouse gas emitting series hydraulic hybrids, EPA has passed the leadership for further development to industry.
Journal Article

Vehicle Component Benchmarking Using a Chassis Dynamometer

2015-04-14
2015-01-0589
The benchmarking study described in this paper uses data from chassis dynamometer testing to determine the efficiency and operation of vehicle driveline components. A robust test procedure was created that can be followed with no a priori knowledge of component performance, nor additional instrumentation installed in the vehicle. To develop the procedure, a 2013 Chevrolet Malibu was tested on a chassis dynamometer. Dynamometer data, emissions data, and data from the vehicle controller area network (CAN) bus were used to construct efficiency maps for the engine and transmission. These maps were compared to maps of the same components produced from standalone component benchmarking, resulting in a good match between results from in-vehicle and standalone testing. The benchmarking methodology was extended to a 2013 Mercedes E350 diesel vehicle. Dynamometer, emissions, and CAN data were used to construct efficiency maps and operation strategies for the engine and transmission.
Journal Article

Development and Testing of an Automatic Transmission Shift Schedule Algorithm for Vehicle Simulation

2015-04-14
2015-01-1142
The Advanced Light-Duty Powertrain and Hybrid Analysis (ALPHA) tool was created by EPA to estimate greenhouse gas (GHG) emissions from light-duty (LD) vehicles [1]. ALPHA is a physics-based, forward-looking, full vehicle computer simulation capable of analyzing various vehicle types combined with different powertrain technologies. The software tool is a MATLAB/Simulink based desktop application. In order to model the behavior of current and future vehicles, an algorithm was developed to dynamically generate transmission shift logic from a set of user-defined parameters, a cost function (e.g., engine fuel consumption) and vehicle performance during simulation. This paper presents ALPHA's shift logic algorithm and compares its predicted shift points to actual shift points from a mid-size light-duty vehicle and to the shift points predicted using a static table-based shift logic as calibrated to the same vehicle during benchmark testing.
Technical Paper

Benchmarking and Modeling of a Conventional Mid-Size Car Using ALPHA

2015-04-14
2015-01-1140
The Advanced Light-Duty Powertrain and Hybrid Analysis (ALPHA) tool was created by EPA to evaluate the Greenhouse Gas (GHG) emissions of Light-Duty (LD) vehicles [1]. ALPHA is a physics-based, forward-looking, full vehicle computer simulation capable of analyzing various vehicle types combined with different powertrain technologies. The software tool is a MATLAB/Simulink based desktop application. The ALPHA model has been updated from the previous version to include more realistic vehicle behavior and now includes internal auditing of all energy flows in the model. As a result of the model refinements and in preparation for the mid-term evaluation of the 2017-2025 LD GHG rule, we are revalidating the model with newly acquired vehicle data. This paper presents the benchmarking, modeling and continued testing of a 2013 Chevy Malibu 1LS. During the initial benchmarking phase, the engine and transmission were removed from the vehicle and tested and evaluated on separate test stands.
X