Refine Your Search

Search Results

Author:
Viewing 1 to 3 of 3
Journal Article

Integrated Chassis Control for Enhancement of High Speed Cornering Performance

2015-04-14
2015-01-1568
This paper describes an Integrated Chassis Control (ICC) strategy for improving high speed cornering performance by integration of Electronics Stability Control (ESC), Four Wheel Drive (4WD), and Active Roll Control System (ARS). In this study, an analysis of various chassis modules was conducted to prove the control strategies at the limits of handling. The analysis is focused to maximize the longitudinal velocity for minimum lap time and ensure the vehicle lateral stability in cornering. The proposed Integrated Chassis Control algorithm consists of a supervisor, vehicle motion control algorithms, and a coordinator. The supervisor monitors the vehicle status and determines desired vehicle motions such as a desired yaw rate, longitudinal acceleration and desired roll motion. The target longitudinal acceleration is determined based on the driver's intention and vehicle current state to ensure the vehicle lateral stability in high speed maneuvering.
Technical Paper

Control Allocation based Optimal Torque Vectoring for 4WD Electric Vehicle

2012-04-16
2012-01-0246
This paper describes an optimal torque vectoring strategy for 4WD electric vehicles (EV) in order to improve vehicle maneuverability, lateral stability and at the same time prevent vehicle rollover. The 4WD EV is driven using an in-line motor at a front driving shaft and in-wheel motors at rear wheels. Many previous studies have been conducted to determine a desired traction force and a yaw moment input for human driver's intention or vehicle stability control. The driving control algorithm consists of three parts: a supervisory controller that determines the control mode, admissible control region, and desired dynamics, such as the desired speed and yaw rate, an upper-level controller that computes the traction force input and yaw moment input to track the desired dynamics and an optimal torque vectoring algorithm that determines actuator commands, such as the front in-line motor, rear in-wheel motors and independent brake modules.
Journal Article

An Investigation into Multi-Core Architectures to Improve a Processing Performance of the Unified Chassis Control Algorithms

2010-04-12
2010-01-0662
This paper describes an investigation into multi-core processing architecture for implementation of a Unified Chassis Control (UCC) algorithm. The multi-core architecture is suggested to reduce the operating load and maximization of the reliability to improve of the UCC system performance. For the purpose of this study, the proposed multi-core architecture supports distributed control with analytical and physical redundancy capabilities. In this paper, the UCC algorithm embedded in electronic control unit (ECU) is comprised of three parts; a supervisor, a main controller, and fault detection/ isolation/ tolerance control (FDI/FTC). An ECU is configured by three processors, and a control area network (CAN) is also implemented for hardware-in-the-loop (HILS) evaluation. Two types of multi-core architectures such as distributed processing, and triple voting are implemented to investigate the performance and reliability.
X