Refine Your Search

Topic

Search Results

Author:
Technical Paper

Advanced H2 ICE development aiming for full compatibility with classical engines while ensuring zero-impact tailpipe emissions

2024-06-12
2024-37-0006
The societies around the world remain far from meeting the agreed primary goal outlined under the 2015 Paris Agreement on climate change: reducing greenhouse gas (GHG) emissions to keep global average temperature rise to well below 20°C by 2100 and making every effort to stay underneath of a 1.5°C elevation. Current emissions are rebounding from a brief decline during the economic downturn related to the Covid-19 pandemic. To get back on track to support the realization of the goal of the Paris Agreement, research suggests that GHG emissions should be roughly halved by 2030 on a trajectory to reach net zero by around mid-century.2 Although these are averaged global targets, every sector and country or market can and must contribute, especially higher-income and more developed countries bear the greater capacity to act. In 2020 direct tailpipe emissions from transport represented around 8 GtC02e, or nearly 15% of total emissions.
Technical Paper

Efficiency-Biased Design of an H2-Fueled Internal Combustion Engine for Heavy and Challenging Applications

2023-08-28
2023-24-0075
This publication outlines FEV’s engineering approach and the associated process steps for efficiency optimization of the entire powertrain definition for various commercial applications, from light-duty vehicles to heavy long-haul trucks, with particular emphasis on the most important use cases. A focus is on the crucial trade-off between attractive transient drivetrain performance and the pursuit of ultra-low, near zero tailpipe pollutant emissions. The applied measures, ranging from minimized mechanical friction and reduced losses to on-demand support by different boosting technologies, different types of H2 injection and mixture formation (external and internal), and different exhaust gas aftertreatment layouts, are thoroughly evaluated and investigated using FEV’s dedicated H2-ICE simulation tool chain. This enables the specification of satisfactory H2-ICE based powertrain solutions for a wide range of use cases in the commercial vehicle sector.
Technical Paper

Hybridized Diesel Powertrains for LCV Applications to Meet the Stringent 2025 Standards for Pollutant- and CO2-Emissions

2020-09-15
2020-01-2252
The ever-increasing pressure to reduce greenhouse gas (GHG) emissions from the transport sector poses challenges to the entire industry. Since the release of the new European CO2 fleet emission targets demanding a massive reduction in the upcoming years (-15%/-31% in 2025/2030 vs. the 2021 figures), substantial initiatives have been launched to ensure the development of affordable solutions. goals meeting the market requirements. Diesel powered vehicles and, especially Light-duty Diesel has been the main driver for CO2 emission reductions in recent years. These achievements were mainly based on improvement of combustion efficiency and reduction of mechanical losses. Based on this experience, it appears doubtful to achieve further significant fuel consumption and CO2 reductions with an improvement in engine technology alone. This reduction steps requested by the authorities call for the implementation of new technologies.
Technical Paper

Smart Cylinder Deactivation Strategies to Improve Fuel Economy and Pollutant Emissions for Diesel-Powered Applications

2019-09-09
2019-24-0055
Further improvement of the trade-off between CO2 and pollutant emissions is the main motivating factor for the development of new diesel engine concepts, from light-duty car applications via medium-duty commercial vehicles up to large long-haul trucks. The deactivation of one or more cylinders of a light-duty diesel engine during low load operation can be a sophisticated method to improve fuel economy and reduce especially NOx emissions at the same time. Dynamic Skip Fire (DSF) is an advanced cylinder deactivation technology, where the decision to fire or skip singular units of a multi-cylinder engine architecture is taken just prior to each firing opportunity, based on a balanced rankling of multiple input parameters.
Technical Paper

Dynamic Skip Fire Applied to a Diesel Engine for Improved Fuel Consumption and Emissions

2019-04-02
2019-01-0549
Dynamic skip fire (DSF) is an advanced cylinder deactivation technology where the decision to fire or skip a singular cylinder of a multi-cylinder engine is made immediately prior to each firing opportunity. A DSF-equipped engine features the ability to selectively deactivate cylinders on a cylinder event-by-event basis in order to match the requested torque demand at optimum fuel efficiency while maintaining acceptable noise, vibration and harshness (NVH). Dynamic Skip Fire (DSF) has already shown significant fuel economy improvements for throttled spark-ignition engines. This paper explores the potential benefits of DSF technology in improving fuel economy while maintaining ultra-low tailpipe emissions for light-duty (LD) Diesel powertrains.
Technical Paper

48 V Diesel Hybrid - Advanced Powertrain Solution for Meeting Future Indian BS 6 Emission and CO2 Legislations

2019-01-09
2019-26-0151
The legislations on emission reduction is getting stringent everywhere in the world. India is following the same trend, with Government of India (GOI) declaring the nationwide implementation of BS 6 legislation by April 2020 and Real Driving Emission (RDE) Cycle relevant legislation by 2023. Additionally GOI is focusing on reduction of CO2 emissions by introduction of stringent fleet CO2 targets through CAFE regulation, making it mandatory for vehicle manufacturers to simultaneously work on gaseous emissions and CO2 emissions. Simultaneous NOx emission reduction and CO2 reduction measures are divergent in nature, but with a 48 V Diesel hybrid, this goal can be achieved. The study presented here involves arriving at the right future hybrid-powertrain layout for a Sports Utility Vehicle (SUV) in the Indian scenario to meet the future BS 6 and CAFÉ legislations. Diesel engines dominate the current LCV and SUV segments in India and the same trend can be expected to continue in future.
Technical Paper

In-Use Compliance Opportunity for Diesel Powertrains

2018-04-03
2018-01-0877
In-use compliance under LEV III emission standards, GHG, and fuel economy targets beyond 2025 poses a great opportunity for all ICE-based propulsion systems, especially for light-duty diesel powertrain and aftertreatment enhancement. Though diesel powertrains feature excellent fuel-efficiency, robust and complete emissions controls covering any possible operational profiles and duty cycles has always been a challenge. Significant dependency on aftertreatment calibration and configuration has become a norm. With the onset of hybridization and downsizing, small steps of improvement in system stability have shown a promising avenue for enhancing fuel economy while continuously improving emissions robustness. In this paper, a study of current key technologies and associated emissions robustness will be discussed followed by engine and aftertreatment performance target derivations for LEV III compliant powertrains.
Technical Paper

Meeting 2025 CAFE Standards for LDT with Fuel-Efficient Diesel Powertrains - Approaches and Solutions

2017-03-28
2017-01-0698
In view of changing climatic conditions all over the world, Green House Gas (GHG) saving related initiatives such as reducing the CO2 emissions from the mobility and transportation sectors have gained in importance. Therefore, with respect to the large U.S. market, the corresponding legal authorities have defined aggressive and challenging targets for the upcoming time frame. Due to several aspects and conditions, like hesitantly acting clients regarding electrically powered vehicles or low prices for fossil fuels, convincing and attractive products have to be developed to merge legal requirements with market constraints. This is especially valid for the market segment of Light-Duty vehicles, like SUV’S and Pick-Up trucks, which are in high demand.
Journal Article

Optimization of Exhaust After-Treatment System (EATS) to BS 6 Emission Level for a Light Commercial Vehicle (LCV) Using Existing BS 4 Engine Results and 1-D Simulation Approach

2017-01-10
2017-26-0119
The emission legislations are becoming increasingly strict all over the world and India too has taken a big leap in this direction by signaling the migration from Bharat Stage 4 (BS 4) to BS 6 in the year 2020. This decision by the Indian government has provided the Indian automotive industry a new challenge to find the most optimal solution for this migration, with the existing BS 4 engines available in their portfolio. Indian market for the LCV segment is highly competitive and cost sensitive where the overall vehicle operation cost (vehicle cost + fluid consumption cost) is the most critical factor. The engine and after-treatment technology for BS 6 emission levels should consider the factors of minimizing the additional hardware cost as well as improving the fuel efficiency. Often both of which are inversely proportional. The presented study involves the optimization of after treatment component size, layout and various systems for NOx and PM reduction.
Technical Paper

Tuning and Validation of DPF for India Market

2017-01-10
2017-26-0135
In a move to curb vehicular pollution, Indian Government decided to bring forward the date for BSVI standards into effect from April 2020 while skipping the intermediate BSV stage. The plan to implement BSVI norms, which initially was scheduled for 2024 according to the National Auto Fuel Policy dated April 27, 2015, has now been slotted for April 2020. For particulate mass (PM) emissions to be brought down to the BS VI level (4.5mg/km), diesel passenger cars need to be fitted with a diesel particulate filter (DPF). The diesel particulate filter (DPF) is a device designed to remove soot from the exhaust gas of the diesel engine. DPF must be cleaned/regenerated from time to time else, it will block up. Optimized DPF calibration is the key for various challenges linked with its use as one of the effective PM reduction technology.
Technical Paper

Comparative Study to Assess the Potential of Different Exhaust Gas Aftertreatment Concepts for Diesel Powered Ultra-Light Commercial Vehicle Applications in View of Meeting BS VI Legislation

2017-01-10
2017-26-0128
Despite the trend in increased prosperity, the Indian automotive market, which is traditionally dominated by highly cost-oriented producion, is very sensitive to the price of fuels and vehicles. Due to these very specific market demands, the U-LCV (ultra-light commercial vehicle) segment with single cylinder natural aspirated Diesel engines (typical sub 650 cc displacement) is gaining immense popularity in the recent years. By moving to 2016, with the announcement of leapfrogging directly to Bharat Stage VI (BS VI) emission legislation in India, and in addition to the mandatory application of Diesel particle filters (DPF), there will be a need to implement effective NOx aftertreament systems. Due to the very low power-to-weight ratio of these particular applications, the engine operation takes place under full load conditions in a significant portion of the test cycle.
Journal Article

Cylinder Pressure Based Fuel Path Control for Non-Conventional Combustion Modes

2015-09-06
2015-24-2508
Model-based control strategies along with an adapted calibration process become more important in the overall vehicle development process. The main drivers for this development trend are increasing numbers of vehicle variants and more complex engine hardware, which is required to fulfill the more and more stringent emission legislation and fuel consumption norms. Upcoming fundamental changes in the homologation process with EU 6c, covering an extended range of different operational and ambient conditions, are suspected to intensify this trend. One main reason for the increased calibration effort is the use of various complex aftertreatment technologies amongst different vehicle applications, requiring numerous combustion modes. The different combustion modes range from heating strategies for active Diesel Particulate Filter (DPF) regeneration or early SCR light-off and rich combustion modes to purge the NOx storage catalyst (NSC) up to partially premixed combustion modes.
Technical Paper

Experimental Investigation of a RCCI Combustion Concept with In-Cylinder Blending of Gasoline and Diesel in a Light Duty Engine

2015-09-06
2015-24-2452
Within this study a dual-fuel concept was experimentally investigated. The utilized fuels were conventional EN228 RON95E10 and EN590 Diesel B7 pump fuels. The engine was a single cylinder Diesel research engine for passenger car application. Except for the installation of the port fuel injection valve, the engine was not modified. The investigated engine load range covered low part load operation of IMEP = 4.3 bar up to IMEP = 14.8 bar at different engine speeds. Investigations with Diesel pilot injection showed that the dual-fuel approach can significantly reduce the soot/NOx-trade-off, but typically increases the HC- and CO-emissions. At high engine load and gasoline mass fraction, the premixed gasoline/air self-ignited before Diesel fuel was injected. Reactivity Controlled Compression Ignition (RCCI) was subsequently investigated in a medium load point at IMEP = 6.8 bar.
Journal Article

An Experimental Investigation of Dual-Fuel Combustion in a Light Duty Diesel Engine by In-Cylinder Blending of Ethanol and Diesel

2015-09-01
2015-01-1801
This study investigated dual-fuel operation with a light duty Diesel engine over a wide engine load range. Ethanol was hereby injected into the intake duct, while Diesel was injected directly into the cylinder. At low loads, high ethanol shares are critical in terms of combustion stability and emissions of unburnt hydrocarbons. As the load increases, the rates of heat release become problematic with regard to noise and mechanical stress. At higher loads, an advanced injection of Diesel was found to be beneficial in terms of combustion noise and emissions. For all tests, engine-out NOx emissions were kept within the EU-6.1 limit.
Journal Article

OBD Diagnostic Strategies for LEVIII Exhaust Gas Aftertreatment Concepts

2015-04-14
2015-01-1040
Upcoming motor vehicle emission regulations, such as California's LEVIII, continue to tighten emission limitations in diesel vehicles. These increasingly challenging emission requirements will be met by improving the combustion process (reducing engine-out emissions), as well as improving the exhaust gas aftertreatment efficiency. Furthermore, intricate On-Board Diagnostics (OBD) systems are required to properly diagnose and meet OBD regulation requirements for complex aftertreatment systems. Under these conditions, current monitoring strategies are unable to guarantee reliable detection of partially failed systems. Additionally, new OBD regulations require aftertreatment systems to be diagnosed as a whole. This paper covers potential OBD strategies for LEVIII aftertreatment concepts with regard to regulation compliance and robustness, while striving to use existing sensor concepts.
Technical Paper

Robust Emission Compliance and Reduction of System Cost by advanced emission-based Diesel engine air management

2015-01-14
2015-26-0089
The continuously strengthened requirements regarding air quality and pollutant reduction as well as GHG emissions further complicate the compliance with legal standards. Especially in view of cost-sensitive applications this demand strongly collides with the EMS set-up and the sensor requirements with still increasing overall system complexity. The paper in hand describes a novel air path control approach, which offers the potential for a flexible use of multiple EGR routes to meet upcoming legislations more robustly, while providing a significant reduction of calibration effort and sensor content at the same time. By using a direct emission based cylinder charge control, also alterations in operational ambient conditions are covered with system reactions according to physical-based rules to enhance the engine-out emission performance without need for tuning of corrections of any air path set point.
Journal Article

Utilization of HVO Fuel Properties in a High Efficiency Combustion System: Part 2: Relationship of Soot Characteristics with its Oxidation Behavior in DPF

2014-10-13
2014-01-2846
The present work is a continuation of the earlier published results by authors on the investigation of Hydrogenated Vegetable Oil (HVO) on a High Efficiency Diesel Combustion System (SAE Int. J. Fuels Lubr. Paper No. 2013-01-1677 and JSAE Paper No. 283-20145128). In order to further validate and interpret the previously published results of soot microstructure and its consequences on oxidation behavior, the test program was extended to analyze the impact of soot composition, optical properties, and physical properties such as size, concentration etc. on the oxidation behavior. The experiments were performed with pure HVO as well as with petroleum based diesel and today's biofuel (i.e. FAME) as baseline fuels. The soot samples for the different analyses were collected under constant engine operating conditions at indicated raw NOx emissions of Euro 6 level using closed loop combustion control methodology.
Technical Paper

Advanced Powertrain Systems Control in Combination with Specifically Optimized Air- and Fuel Path Components to Realise Short Term CO2 Emissions Reduction with an Existing 2.2l I4 Diesel Engine Architecture

2014-10-13
2014-01-2853
In September 2013 the Jaguar XF 2.2l ECO sport brake and saloon were introduced to the European market. They are the first Jaguar vehicles to realize CO2 emissions below 130 g/km. To achieve these significantly reduced fuel consumption values with an existing 2.2l I4 Diesel engine architecture, selected air path and fuel path components were optimized for increased engine efficiency. Tailored hardware selection and streamlined development were only enabled by the consequent utilisation of the most advanced CAE tools throughout the design phase but also during the complete vehicle application process.
Technical Paper

Potential of Advanced, Combined Aftertreatment Systems for Light-Duty Diesel Engines to Meet Upcoming EU and US Emission Regulation

2013-09-08
2013-24-0163
The modern DI-diesel engine represents a valuable platform to achieve worldwide tightened CO2 standards while meeting future strengthened emission regulations in the EU and the US. Due to the simultaneous, partially contrary legal demands, new integrated and combined systems are required to allow best overall performance within the upcoming legal frames concerning pollutant emission reduction and minimization of CO2 output. As extended emission relevant areas in the engine map have to be respected in view of RDE and PEMS scenarios in EU, but also facing the LEVIII standards in the US, comprehensive and synchronized technical solutions have to be engineered. Based on furthermore optimized combustion systems with improved combustion efficiency, meaning also lowered exhaust gas temperatures, especially refined and tailored emission control systems are demanded.
Journal Article

Impact of Biomass-Derived Fuels on Soot Oxidation and DPF Regeneration Behavior

2013-04-08
2013-01-1551
To comply with the new regulations on particulate matter emissions, the manufacturers of light-duty as well as heavy-duty vehicles more commonly use diesel particulate filters (DPF). The regeneration of DPF depends to a significant extent on the properties of the soot stored. Within the Cluster of Excellence "Tailor-Made Fuels from Biomass (TMFB)" at RWTH Aachen University, the Institute for Combustion Engines carried out a detailed investigation program to explore the potential of future biofuel candidates for optimized combustion systems. The experiments for particulate measurements and analysis were conducted on a EURO 6-compliant High Efficiency Diesel Combustion System (HECS) with petroleum-based diesel fuel as reference and a today's commercial biofuel (i.e., FAME) as well as a potential future biomass-derived fuel candidate (i.e., 2-MTHF/DBE). Thermo gravimetric analyzer (TGA) was used in this study to evaluate the oxidative reactivity of the soot.
X