Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Pixelated-LEDs Car Headlight Design for Smart Driving and CO2 Reduced Emissions

2020-06-30
2020-37-0018
The advent of Electroluminescent Diode (LED) technologies has been one of the major sources of energy reduction in the domestic lighting sector as well as in the automotive and aerospace fields. In vehicles, the use of LEDs allows a reduction of 110W to 40W useful for the function Dipped beam is a gain of about 350W in energy consumption of the vehicle with a combustion engine (from 2 to 5g of CO2 per kilometer) [1]. In 2010, Adaptive Driving Beam (ADB (also called glare-free high beam) appeared. The objective of the ADB is to adapt the beam to the presence of vehicles in both directions to improve the driver's long-range visibility without causing discomfort, distraction or glare to other road users. The ADB is a lighting function with high added value in terms of comfort and road safety [2]. The new lighting technologies make this function more and more efficient and effective with a resolution and the number of pixels that increases.
Technical Paper

Combustion Modeling of a Direct Injection Diesel Engine Using Double Wiebe Functions: Application to HiL Real-Time Simulations

2011-09-11
2011-24-0143
This paper presents a DI diesel engine combustion model based on double Wiebe equations approach. The aim of this work is to build a combustion model suitable for Hardware-in-the-Loop (HiL) simulations, and thus to be able to run in real-time applications. First, an ignition model is presented and correlated function of engine operating conditions. Then the combustion model parameters have been calibrated with a curve fitting technique with test bench experimental results. The calibration and validation process have been realized first on Matlab. Then the combustion model was coded in S-functions Simulink blocks suitable for HiL implementation. Offline test results for single injection cases with high engine speed (≻4000 rpm) are presented in this paper.
X