Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

A 3D Semi-Empirical On-Road Transient Tire Model

2010-10-05
2010-01-1916
To realistically predict the dynamics of a vehicle, the forces and moments in the contact patch must be accurately computed. A two-dimensional semi-empirical transient tire model was previously developed in the Advanced Vehicle Dynamics Lab (AVDL) at Virginia Tech, and extended the capabilities of the steady-state tire model also developed at AVDL. In this paper, a three-dimensional semi-empirical transient tire model is presented. The tire structure is modeled by an elastic ring supported on a spring and damper system. The elastic ring represents the belt ring and the spring and damper system represents the sidewall and the tread element. The analysis of the deformation of the tire structure with camber angle is performed on a flat surface to obtain the geometry of the contact patch and the normal pressure distribution. The forces and the moments are formulated using empirical data and based on theoretical mechanics.
Technical Paper

A Semi-Empirical Tire Model for Transient Maneuver of On Road Vehicle

2009-10-06
2009-01-2919
To study vehicle dynamics, we need to know the forces and moments acting on the vehicle. The most important forces and moments acting on the vehicle are generated at the tire contact patch. A semi-empirical tire model was developed at Advanced Vehicle Dynamics Lab (AVDL) to use for vehicle simulations for steady-state conditions. In this paper, we extended that model to account for transient conditions. We present the basic concept, the development of the tire model, and selective simulation results. The transient tire model is developed by including the effects of the vertical load variations due to the velocity and the acceleration to the tire characteristic parameters. The simulation was performed for the semi-empirical transient tire model in two scenarios. The vehicle driving and braking maneuver was simulated to present the transient longitudinal tire behavior. The vehicle lane changing maneuver also was performed to present the transient lateral tire behavior.
X