Refine Your Search

Search Results

Author:
Viewing 1 to 16 of 16
Technical Paper

Simple Prediction for Fuel Consumption and Cruising Distance of Internal Combustion Engine Vehicles with RFD Method

2019-04-02
2019-01-0893
In order to develop various parts and components of vehicles, understanding the effects of their structures and thermal performance on the fuel consumption and cruising distance is important. However, because of the limited information available to parts suppliers, it is not always easy to predict and study vehicle fuel efficiency and cruising range performance under arbitrary driving conditions. In this study, the authors have developed an RFD (Regression Fuel-consumption Diagram) method to predict the cruising performance of internal-combustion engine vehicles (ICEV) based only on the published information given to suppliers by using standard reference vehicles, which had been regressed and identified for control characteristics and fuel consumption diagrams. As an example of the application of the RFD method to realistic situation, the effects of the driving mode and air-conditioning on the fuel consumption of ICEV are studied.
Technical Paper

Effects of the Glass and Body Heat Transfer Characteristics of a Hybrid Electric Vehicle on Its Fuel Consumption and Cruising Distance

2017-03-28
2017-01-0184
In order to develop various parts and components for hybrid electric vehicles, understanding the effect of their structure and thermal performance on their fuel consumption and cruising distance is essential. However, this essential information is generally not available to suppliers of vehicle parts and components. In this report, following a previous study of electric vehicles, a simple method is proposed as the first step to estimate the algorithm of the energy transmission and then the cruising performance for hybrid electric vehicles. The proposed method estimates the cruising performance using only the published information given to suppliers, who, in general, are not supplied with more detailed information. Further, an actual case study demonstrating application of the proposed method is also discussed.
Journal Article

Effects of the Glass and Body Heat Transfer Characteristics of an Electric Vehicle on its Energy Consumption and Cruising Distance

2016-04-05
2016-01-0260
In order to develop various parts and components of electric vehicles, understanding the effects of their structures and thermal performance on the energy consumption and cruising distance is important. However, such essential and detailed information is generally not always available to suppliers of vehicle parts and components. This paper presents the development of a simple model of the energy consumption by an electric vehicle in order to roughly calculate the cruising performance based only on the published information to give to suppliers, who otherwise cannot obtain the necessary information. The method can calculate the cruising distance within an error of 4% compared to the published information. The effects of the glass and body heat transfer characteristics on the cruising performance in winter were considered as an example application of the proposed model.
Technical Paper

Numerical Analysis on the Transitional Mechanism of the Wake Structure of the Ahmed Body

2016-04-05
2016-01-1592
The critical change in drag occurring on the Ahmed body when the slanted base has an angle of 30° is due to a transition in the wake structure. In a previous study on flow analysis across the Ahmed body, we investigated the unsteady wake experimentally using hot-wire and particle image velocimetry measurements. However, because the experimental analysis yielded limited data, the spatially unsteady wake behaviour, interaction between the trailing vortex and transverse vortices (up/downwash), and flow mechanism near the body were not discussed sufficiently. In this study, the unsteady wake structures were analysed computationally using computational fluid dynamics to understand these issues, and the hypothesis was tested. The slant angle was 27.5°, which is identical to that in the experiment and corresponds to a high drag condition indicated experimentally.
Technical Paper

Analysis of Defogging Pattern on Windshield and Ventilation Load Reduction based on Humidity Distribution Control

2016-04-05
2016-01-0256
In the winter, windshield glass fogging must be prevented through the intake of outdoor air into a vehicle. However, the corresponding energy loss via the ventilation system cannot be ignored. In the present study, the defogging pattern on the windshield is evaluated and the water vapor transportation in the flow field in the vehicle is analyzed in order to investigate the ventilation load by means of a numerical simulation. Some examined cases involve new outlet positions. Additionally, a new, energy-saving air supply method for defogging, with so-called “double-layer ventilator”, is proposed. In this method, one air jet layer is obtained via a conventional defogging opening in the vicinity of the windshield, supplying an outdoor air intake. The other jet consists of recirculated air that covers the outdoor air, preventing it from mixing with the surrounding air.
Technical Paper

Development of Momentum Source Model of Vehicle Turbocharger Turbine

2016-04-05
2016-01-0210
Recently, the evaluation of the thermal environment of an engine compartment has become more difficult because of the increased employment and installation of turbochargers. This paper proposes a new prediction model of the momentum source for the turbine of a turbocharger, which is applicable to three-dimensional thermal fluid analyses of vehicle exhaust systems during the actual vehicle development phase. Taking the computational cost into account, the fluid force given by the turbine blades is imitated by adding an external source term to the Navier-Stokes equations corresponding to the optional domain without the computational grids of the actual blades. The mass flow rate through the turbine, blade angle, and number of blade revolutions are used as input data, and then the source is calculated to satisfy the law of the conservation of angular momentum.
Journal Article

Experimental Analysis on the Transitional Mechanism of the Wake Structure of the Ahmed Body

2016-04-05
2016-01-1591
The critical change in drag occurs in the Ahmed Body at 30° of the slanted base due to the transition in the wake structure. The distinctive feature of this bi-stage phenomenon, which consists of three-dimensional and quasi-axisymmetric separation states, is that the state drastically changes. Because this feature indicates that each state is stable around a critical angle, the transition is believed to be triggered by some instantaneous disturbances. Therefore, in our previous papers, we have paid attention on the unsteady behavior of the wake to determine the trigger that induces the transition. However, the relationship between the spatial transient behavior of the wake structures and the specific frequencies has not been clarified. Then, we tried to control the degree of interaction of the trailing vortices on the downwash by changing the aspect ratio of the slanted base.
Journal Article

Study on the Transient Behaviour of the Vortex Structure behind Ahmed Body

2014-04-01
2014-01-0597
On a bluff body which has a slant surface on the rear upper part, it is well known that the drastic change of a wake structure behind the rear body occurs at 30°of the slant angle. Originally, this critical phenomenon was pointed out by L.J. Janssen, W.H. Hucho, and H.J. Emmelmann in the middle of the 1970s. In 1984, S.R. Ahmed conducted systematic measurements by changing the rear slant angle of the bluff body, called the “Ahmed Body”, to find the critical phenomenon. In the 2000s, D.B. Sims-Williams found that the Ahmed Body had vortex structures which had specific frequencies. However, the relationship between the critical phenomenon and the unsteady behaviour has not been clarified yet. Therefore, as the first step of this study, we measured the unsteady wake behaviour for various slant angles to find the relationship between the Strouhal number and the angle. The characteristics of the fluctuation were captured with two hot-wires.
Journal Article

Proper Orthogonal Decomposition Analysis of Flow Structures Generated around Engine Cooling Fan

2014-04-01
2014-01-0667
A cooling fan is one of the primary components affecting the cooling performance of an engine cooling system. In recent years, with the increase in electric vehicles (EVs) and hybrid vehicles (HVs), the cooling performance and noise level of the cooling fan have become very important. Thus, the development of a low-noise fan with the same cooling performance is urgently required. To address this issue, it is critical to find the relation between the performance of the fan and the flow structures generated around it, which is discussed in the present paper. Specifically, a computational method is employed that uses unsteady Reynolds-averaged Navier-Stokes (URANS) coupling with a sliding mesh (SLM). Measurements of the P-Q (Pressure gain-Flow rate) characteristics are performed to validate the predictive accuracy of the simulation.
Technical Paper

Reduction of the BPF Noise Radiated from an Engine Cooling Fan

2014-04-01
2014-01-0631
This study investigates the reduction of the Blade Passing Frequency (BPF) noise radiated from an automotive engine cooling fans, especially in case of the fan with an eccentric shroud. In recent years, with the increase of HV and EV, noise reduction demand been increased. Therefore it is necessary to reduce engine cooling fan noise. In addition, as a vehicle trend, engine rooms have diminished due to expansion of passenger rooms. As a result, since the space for engine cooling fans need to be small. In this situation, shroud shapes have become complicated and non-axial symmetric (eccentric). Generally, the noise of fan with an eccentric shroud becomes worse especially for BPF noise. So it is necessary to reduce the fan BPF noise. The purposes of this paper is to find sound sources of the BPF noise by measuring sound intensity and to analyze the flow structure around the blade by Computational Fluid Dynamics (CFD).
Technical Paper

Numerical Analysis of Energy Efficiency of Zone Control Air-Conditioning System for Electric Vehicle using Numerical Manikin

2013-04-08
2013-01-0237
During air heating in winter, the air-conditioning system of an electric vehicle draws much energy from the battery, which significantly shortens the vehicle's cruising distance as compared to an air cooling in summer. In this study, which considers the air-heating mode, a zone control (ZC) air-conditioning system is developed with the goal of achieving energy savings. The ZC system, which focuses particularly on the area around the driver, is able to reduce the supplied airflow rate. While this rate is one of the most important parameters in the analysis in this study, it represents a trade-off with the thermal comfort of passengers. Thus, the standard new effective temperature (SET*) is also evaluated, using numerical manikins, to compare the developed system with a conventional system. In addition, the age of air is investigated in order to quantitatively evaluate the air distribution efficiency of the ZC system.
Technical Paper

Ventilation Characteristics of Modeled Compact Car Part 6 - Numerical Analysis of Heat Transfer Characteristics by CRI

2012-04-16
2012-01-0640
In the present study, numerical simulation coupling convection and radiation in vehicle was done to analyze the formation of the temperature field under the non-uniform thermal condition. The scaled cabin model of simplified compact car was used and the thermal condition was determined. The fore floor, the top side of the inst. panel, the front window and the ceiling were heat source. The lateral side walls were cooled by the outdoor air and the other surfaces were adiabatic. It is same with the experimental condition presented in Part 5. In order to analyze the individual influence of each heat source, Contribution Ratio of Indoor climate (CRI) index was used. CRI is defined as the ratio of the temperature rise at a point from one individual heat source to the temperature rise under the perfect mixing conditions for the same heat source.
Technical Paper

Ventilation Characteristics of Modeled Compact Car Part 5 - Scaled Model Experiment for Heat Transfer Characteristics

2012-04-16
2012-01-0634
Accuracy of numerical simulation has to be evaluated through the actual phenomenon such as experiment or measurement and then it can be employed to design the air-conditioning system of car cabin at the development phase. Scaled model of vehicle cabin was created by the Society of Automotive Engineers of Japan (JSAE) and the experiment was performed to obtain the detailed information of heat transfer characteristics inside the cabin under the non-isothermal condition. The sheet heaters were put to the inner surface of the acrylic cabin and they supplied certain amount of heat. The temperatures of inner and outer surface and air were measured to evaluate the thermal environment of the cabin. The results lead to enhancement of the data of the standard model of the cabin.
Technical Paper

Comparison of Impact Due to an Aerodynamic Component in Wind Tunnel and On-Road Tests

2011-04-12
2011-01-0157
The aerodynamic performance of new vehicles is commonly determined using computational fluid dynamics (CFD) and wind tunnel tests. The final assessment is carried out by actual running tests. In particular, ideas regarding fuel consumption improvement that relate to components for the reduction of the coefficient of drag (CD) value are evaluated by coast-down tests. However, a difference often exists between the component's efficiency between wind tunnel tests and coast-down tests. Therefore, we focused on the efficiency of an air-dam spoiler in reducing CD values. A comparison was made between the aerodynamic effect of the air-dam spoiler in wind tunnel and coast-down tests in terms of the CD value and the wake structure behind the vehicle. To determine the relationship between the CD value and the wake structure behind the vehicle, we measured vehicle speed, wind velocity and direction, vehicle height, and pressure distribution on the back door.
Technical Paper

Study of Influence of MRF Method on the Prediction of the Engine Cooling Fan Performance

2011-04-12
2011-01-0648
MRF method is commonly used for predicting cooling performance to design vehicle engine cooling systems. Especially, the practical prediction of the cooling fan performance is one of the important issues. In the design phase of the vehicle development, combinations of multiple parameters are generally examined. Therefore, the steady RANS coupled with MRF method is indispensable. However, unfortunately, the current method does not always give enough accuracy to practical vehicle design. Thus, this paper describes that the method to determine adequate MRF-region to predict the fan performance in practical accuracy.
Journal Article

Prediction of the Performance of the Engine Cooling Fan with CFD Simulation

2010-04-12
2010-01-0548
The technology concerning thermo and fluid dynamics is one of the important fields which have made great progress along with rapid advance in computational resources. Especially, the CFD technology has been proved as successful contribution to the development of the engine cooling system. Therefore, this technology is widely used at early phase of the vehicle development. However, a serious problem has been remained that it does not always give practical precision. Particularly, the cooling fan is one of the primary components in the cooling system to determine the performance, while practical calculation method without depending on large resources has not established.
X