Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Design, Optimization, Performances and Flight Operation of an All Composite Unmanned Aerial Vehicle

2013-09-17
2013-01-2192
Unmanned Aerial Vehicles (UAVs) provide the ability to perform a variety of experimental tests of systems and unproven research technologies, including new autopilot systems and obstacle avoidance capabilities, without risking the lives of human pilots. This paper describes the activities of design, optimization, and flight operations of a UAV conceived at Clarkson University (USA) and equipped to perform wind speed measurements to support wind farmsite planning. The UAV design has been assisted and validated by the use of an automatic virtual environment for the assisted design of civil UAVs. This tool can be used as a “computing machine” for civil UAVs. The operator inputs the mission profile and other generic parameters and data about performance, aerodynamics, and weight breakdown are extracted. A mathematical model of the UAV for flight simulation and its dynamic computations, along with automatic drawing is also produced.
Technical Paper

System Identification from GVT and Taxiing of an Unmanned Aerial Vehicle

2013-09-17
2013-01-2190
The modal parameters of an aircraft structure are currently estimated from ground vibration tests (GVT). These tests are carried out on ground in order to estimate the frequency response functions first and then the modal parameters. Such estimates require one or more shakers to excite the structure together with simultaneous measurements of both the input and the output signals. Recent developments in operational modal analysis allowed such modal identification from the measurements of the output responses only, provided that the unmeasurable excitation is practically a white noise stochastic input in the frequency range of interest and is randomly exciting the different parts of the structure. In this paper the effects of the different test setup on the modal parameter estimates will be presented. Both input-output based experimental modal analysis and operational modal analysis are performed on an Unmanned Aerial Vehicle, the Clarkson University Golden Eagle.
Technical Paper

An Integrated Software Environment for UAV Missions Support

2013-09-17
2013-01-2189
This paper describes the design and development of a virtual environment conceived to support flight operations of an Unmanned Air Vehicle (UAV) used for wind mapping in the proximity of existing or planned wind farms. The virtual environment can be used in pre-flight briefings aiming to define a trajectory from a list of waypoints, to change and eventually re-plan the mission in case of intersection with no fly zones, to simulate the mission, and to preview images/videos taken from the UAV on-board cameras. During flight, the tool can be used to compute the wind speed along the trajectory by analyzing the data streaming from the UAV. The integration of Augmented Reality (AR) techniques in the flight environment provides assistance in remotely piloted landings, and allows visualizing flight and environmental information that are critical to the mission.
Technical Paper

Design, Manufacturing, and Testing of a Research Unmanned Aerial Vehicle

2011-10-18
2011-01-2721
This paper details the novel manufacturing processes for an experimental, all-composite, research UAV to be used by Clarkson University. Discussions will include an in depth report on the selection of materials, manufacturing methods, and the implementation and results of the fabrication procedures for the structural components along with the challenges of constructing an aircraft capable of meeting multiple FAA regulatory requirements.
Technical Paper

Experimental Methods for the Characterization of the Static and Dynamic Stability of a Spinning Body

2011-10-18
2011-01-2735
Newly developed technologies are enabling the design of Unmanned Aerial Vehicles (UAVs) and Micro Air Vehicles (MAVs) with heretofore unrealized capabilities. A tube-launch MAV would allow the increased flexibility to launch an aircraft rapidly without need for a runway or complex launching system, either from a vehicle, installation, or as a man-portable device. The MAV would fill the diameter of the launch tube and deploy aerodynamic lifting and control surfaces after launch. In order to deploy the lifting surfaces the MAV must be capable of deploying control surfaces, negating any tube-imparted roll rate, and developing an optimal flight attitude automatically. An experimental method was developed to characterize the aerodynamics and stability of a blunt body spinning under conditions of roll rate decay in the Clarkson University High Speed Wind tunnel. This method is to be used to evaluate the development of an active roll rate control system for spinning projectiles.
X