Refine Your Search

Search Results

Author:
Viewing 1 to 4 of 4
Journal Article

Fuel Pressure and Charge Motion Effects on GDi Engine Particulate Emissions

2015-04-14
2015-01-0746
The focus of this study is investigation of the influence of fuel system pressure, intake tumble charge motion and injector seat specification - namely the static flow and the plume pattern - on the GDi engine particulate emissions under the homogenous combustion operation. The paper presents the spray characteristics and the single cylinder engine combustion data for the Delphi Multec® 14 GDi multi-hole fuel injector, capable of 40 [MPa] fuel system pressure. It provides results of a study of the influence of fuel pressure increase between 5 [MPa] to 40 [MPa], for three alternative seat designs, on the combustion characteristics, specifically the particulate and gaseous emissions and the fuel consumption. In conjunction with the fuel system pressure, the effect of enhanced charge motion on the combustion characteristics is investigated.
Journal Article

Fuel System Pressure Increase for Enhanced Performance of GDi Multi-Hole Injection Systems

2014-04-01
2014-01-1209
The progressive trend towards the GDi engine downsizing, the focus on better fuel efficiency and performance, and the regulatory requirements with respect to the combustion emissions have brought the focus of attention on strategies for improvement of in-cylinder mixture preparation and identification and elimination of the sources of combustion emissions, in particular the in-cylinder particulate formation. This paper discusses the fuel system components, injector dynamics, spray characteristics and the single cylinder engine combustion investigation of a 40 [MPa] capable conventional GDi inwardly-opening multi-hole fuel injection system. It provides results of a study of the influence of fuel system pressure increase between 5 [MPa] to 40 [MPa], in conjunction with the injector static flow and spray pattern, on the combustion characteristics, specifically the particulate and gaseous emissions and the fuel economy.
Journal Article

Strategies Towards Meeting Future Particulate Matter Emission Requirements in Homogeneous Gasoline Direct Injection Engines

2011-04-12
2011-01-1212
Since the introduction of the EURO 5 emission legislation particulate matter emissions are no longer only a concern in the development of Diesel engine powertrains. In addition to particulate mass (PM) requirements the new European legislation will also foresee the implementation of a particulate number (PN) requirement for all spark ignition (SI) vehicles with the introduction of EURO 6. Measurements with state of the art gasoline engine powered vehicles show that conventional MPFI engines are already below the future proposed limits while gasoline engines with direct injection are above these limits and will require additional development efforts. This paper discusses both fuel system component requirements as well as control strategies in support of reducing particulate emissions. On the component side, mixture formation in regard to evaporation rate and penetration is a key factor.
Technical Paper

Cavitation and Hydraulic Flip in the Outward-Opening GDi Injector Valve-Group

2009-04-20
2009-01-1483
Experimental (optical imaging) and CFD investigations of the cavitating flow in a transparent large-scale model of a GDi outward-opening injector, with a swirler-type valve-group, has been performed. The objective is to elucidate the flow structure within the valve group and assess a Reynolds-Averaged Navier-Stokes (RANS) multi-fluid simulation method. The optical imaging data show evidence of cavitation inception in the valve-group swirler-channels-caused by the rapid flow acceleration-and multiple cavitations within the conical nozzle region. The comparison of simulations with data shows that the CFD method reproduces the fluid dynamics of the valve-group with good qualitative agreement with the imaging data (with respect to the cavitation inception and geometry) and excellent quantitative agreement of the valve-group pressure drop-flow rate characteristic.
X