Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Look-Ahead Information Based Optimization Strategy for Hybrid Electric Vehicles

2016-10-17
2016-01-2226
Advanced Driver Assistance Systems (ADAS) is an essential aspect of the automotive technology in this era of technological revolution, where the goal is to make vehicles more convenient, safe, and energy efficient. Taking advantage of more degrees of freedom available within vehicle “energy management” allows more margin to maximize efficiency in the propulsion systems. It is envisioned by this research that future fuel economy regulations will consider the potential benefits of emerging connectivity and automation technologies of vehicle’s fuel consumption. The application focuses on reducing the energy consumption in vehicles by acquiring information about the road grade. Road elevation are obtained by use of Geographic Information System (GIS) maps in order to optimize the controller. The optimization is then reflected on the powertrain of the vehicle. The approach uses a Model Predictive Control (MPC) algorithm that allows the energy management strategy to leverage road grade.
Technical Paper

Active Battery Thermal Management within Electric and Plug-In Hybrid Electric Vehicles

2016-10-17
2016-01-2221
Electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) are considered as a promising future solution for sustainable transportation. This is due to the reduction in energy consumption when compared to conventional internal combustion engine (ICE) based vehicles. EVs and PHEVs contain an Energy Storage Systems (ESS). This increases the complexity of the system but also provides additional margins and fields for optimization. One of the most important elements of these vehicles is the ESS. The electrochemistry nature of battery systems is inherently sensitive to the temperature shifts. The shifts are controlled by the thermal management system of the traction battery systems, for electric-drive vehicles, which directly affects the overall vehicle dynamics. These dynamics include performance, long-term durability, and cost of the battery systems. Hence, thermal management becomes an essential element in the achievement to meet the demand for better performance.
Journal Article

Chassis Dynamometer as a Development Platform for Vehicle Hardware In-the-Loop “VHiL”

2013-05-15
2013-01-9018
This manuscript provides a review of different types and categorization of the chassis dynamometer systems. The review classifies the chassis dynamometers based on the configuration, type of rollers and the application type. Additionally the manuscript discusses several application examples of the chassis dynamometer including: performance and endurance mileage accumulation tests, fuel efficiency and exhaust emissions, noise, vibration and harshness testing (NVH). Different types of the vehicle attachment system in the dynamometer cell and its influences on the driving force characteristics and the vehicle acoustic signature is also discussed. The text also highlights the impact of the use of the chassis dynamometer as a development platform and its impact on the development process. Examples of using chassis dynamometer as a development platform using Vehicle Hardware In-the-Loop (VHiL) approach including drivability assessment and transmission calibrations are presented.
Technical Paper

Pulse Thermography for Inspecting Automotive Components and Materials

2010-04-12
2010-01-0959
The presented manuscript discusses the implementation of the pulsed-thermography technique for the non-intrusive evaluation of automotive parts. The study discusses the fundamentals of static and dynamic thermography through examples and case studies. Furthermore, the proposed pulse thermography system is analyzed in terms of hardware calibration i.e. pulse duration and intensity and the detector effect on the time and the spatial resolutions. Current thermography processing codes and techniques are also described and critiqued, with new processing subroutines proposed; one based on self-referencing thersholding. Additionally, new trends in infrared and visible sensors fusion are presented.
X