Refine Your Search

Search Results

Author:
Viewing 1 to 4 of 4
Technical Paper

Review and Assessment of Multiaxial Fatigue Limit Models

2020-04-14
2020-01-0192
The purpose of this paper is to provide a comparison of multiaxial fatigue limit models and their correlation to experimental data. This paper investigates equivalent stress, critical plane and invariant-based multiaxial fatigue models. Several methods are investigated and compared based on ability to predict multiaxial fatigue limits from data published in literature. The equivalent stress based model developed by Lee, Tjhung and Jordan (LTJ), provides very accurate predictions of the fatigue limit under multiaxial loading due to its ability to account for non-proportional loading. This accuracy comes from the model constant which is calculated based on multiaxial fatigue data. This is the only model investigated that requires multiaxial fatigue testing to generate the model parameters. All other models rely on uniaxial test results.
Journal Article

A Stress-Based Non-Proportionality Parameter for Considering the Resistance of Slip Systems of Shear Failure Mode Materials

2016-04-11
2016-01-9081
Multiaxial loading on mechanical products is very common in the automotive industry, and how to design and analyze these products for durability becomes an important, urgent task for the engineering community. Due to the complex nature of the fatigue damage mechanism for a product under multiaxial state of stresses/strains which are dependent upon the modes of loading, materials, and life, modeling this behavior has always been a challenging task for fatigue scientists and engineers around the world. As a result, many multiaxial fatigue theories have been developed. Among all the theories, an existing equivalent stress theory is considered for use for the automotive components that are typically designed to prevent Case B cracks in the high cycle fatigue regime.
Journal Article

Surface Finish Effects on Fatigue Behavior of Forgings

2011-04-12
2011-01-0488
Fatigue fractures are the most common type of mechanical failures of components and structures. It is widely recognized that surface finish has a significant effect on fatigue behavior. Forgings can be accompanied by significant surface roughness and decarburization. The correction factors used in many mechanical design textbooks to correct for the as-forged surface condition are typically based on data published in the 1940's. It has been found by several investigators that the existing data for as-forged surface condition is too conservative. Such conservative values often result in over-engineered designs of many forged parts, leading not only to increased cost, but also inefficiencies associated with increased weight, such as increased fuel consumption in the automotive industry. In addition, this can reduce forging competitiveness as a manufacturing process in terms of cost and performance prediction in the early design stage, compared to alternative manufacturing processes.
Journal Article

Axial and Bending Fatigue of a Medium Carbon Steel Including Geometry and Residual Stress Effects

2009-04-20
2009-01-0422
This paper discusses the effects of changes in specimen geometry, stress gradient, and residual stresses on fully-reversed constant amplitude uniaxial fatigue behavior of a medium carbon steel. Axial fatigue tests were performed on both flat and round specimens, while four-point rotating bending tests were performed only on round specimens. All the tests were performed using shot peened and unpeened flat and round samples, to investigate the effects of compressive residual stresses on fatigue behavior. The specimens in the rotating bending tests experienced longer life for a given stress amplitude than in the axial test. Shot-peening was found to be beneficial in the long life region, while in short life tests the shot-peened samples experienced a shorter life than the unpeened samples under both axial and bending test conditions.
X