Refine Your Search

Search Results

Author:
Viewing 1 to 4 of 4
Journal Article

Comparison of Fuel Efficiency and Traction Performances of 6 × 4 and 6 × 2 Class 8 Tractors

2014-09-30
2014-01-2358
The objective of this project was to compare the fuel consumption and traction performances of 6 × 2 and 6 × 4 Class 8 tractors. Two approaches have been considered: evaluation of 6 × 2 tractors, modified from 6 × 4 tractors, and evaluation of OEM 6 × 2 tractors. Compared to the 6 × 4 tractors, which are equipped with a rear tandem with both drive axles, the 6 × 2 tractors have a rear tandem axle with one drive axle, and one non-drive axle, also called dead axle. The 6 × 2 tractor configurations are available from the majority of Class 8 tractor manufacturers. The SAE Fuel Consumption Test Procedures Type II (J1321) and Type III (J1526) were used for fuel consumption track test evaluations. Traction performances were assessed using pull sled tests to compare pulling distance, maximum speed, and acceleration when pulling the same set sled on similar surface.
Technical Paper

Trailer Aerodynamic Technologies Wind Tunnel Testing Compared to Track Test Results

2013-11-27
2013-01-2822
The performance of several aerodynamic technologies, such as trailer skirts, vortex generators, and aerodynamic van trailer obtained from model wind tunnel testing were compared with track test results. Wind tunnel tests were conducted on 1/8, 1/15 or 1/24 scale models of a tractor in combination with 53-foot semi-trailer. The tests consisted of two phases: setting the initial baseline, and component testing of various configurations. The SAE Fuel Consumption Test Procedures Type II and Type III were used for track test evaluations. The differences between the track and wind tunnel test results are in some cases explained directly by the some differences between the real scale device and the model. In other situations, the variability and realism of tract testing explain the differences. The wind tunnel results were closer to the track test results for 1/8 scale models than for smaller scale models.
Technical Paper

Development of a Fuel Consumption Test Procedure for Representative Urban Duty Cycles

2011-09-13
2011-01-2291
This project's objective was the development of an on-road vehicle fuel consumption test procedure for representative stop-and-go urban duty cycles. The scope of the project included a review of existing stop-and-go urban duty cycles, the development of a track testing methodology for measuring the fuel consumption on stop-and-go urban duty cycles, and testing with a view to the validation of the methodology. Literature review analyzed several transport activities to determine specific stop-and-go urban duty cycles, such as pick-up and delivery operations, refuse collection, bus transport, and utility and service operation. It was found that driving cycles should be easy enough to recreate and replicate on the test track and should be representative of application driving patterns. The cycles should be adapted for fuel economy testing, and geometric cycles are easier to follow than the cycles based on actual drive traces.
Journal Article

Fuel Consumption Track Tests for Tractor-Trailer Fuel Saving Technologies

2009-10-06
2009-01-2891
The objective of the project was to conduct controlled test-track studies of solutions for achieving higher fuel efficiency and lower greenhouse gas emissions in the trucking industry. Using vehicles from five Canadian fleets, technologies from 12 suppliers were chosen for testing, including aerodynamic devices and low rolling resistance tires. The participating fleets also decided to conduct tests for evaluating the impact on fuel consumption of vehicle speed, close-following between vehicles, and lifting trailer axles on unloaded B-trains. Other tests targeted comparisons between trans-container road-trains and van semi-trailers road-trains, between curtain-sided semi-trailers, trans-containers and van semi-trailers, and between tractors pulling logging semi-trailers loaded with tree-length wood and short wood. The impact of a heavy-duty bumper on fuel consumption and the influence of B5 biodiesel blend on fuel consumption were also assessed.
X