Refine Your Search

Search Results

Author:
Viewing 1 to 3 of 3
Technical Paper

Design Optimization of FEAD System to Meet Durability Target in a New Vehicle Development Program

2014-04-01
2014-01-1636
Front end accessory drive (FEAD) system explained in this paper is a sub-system of an engine. In FEAD system, a poly-v belt is used to drive the alternator and water pump by transmitting power from crankshaft pulley. In a new vehicle development program, durability targets of FEAD system are based on required life of poly-v belt, its static tension readjustment interval and replacement frequency. To meet these durability targets following methodology is applied in design stage:- 1 Simulation of FEAD system to calculate the theoretical life of belt 2 Part level testing of belt as per SAE J2432 These methods give sufficient information on belt durability. However in actual usage, certain failures are prone to happen and enormous difference is always observed between theoretical and actual life of belt. This paper describes the traditional stair-case approach followed to optimize the FEAD system based on the outcome of durability tests.
Technical Paper

Base Engine Value Engineering for Higher Fuel Efficiency and Enhanced Performance

2013-11-27
2013-01-2748
To sustain market leadership position one has to continuously improve their product and services so that on one hand customer expectations are met and on the other hand business profitability is maintained. Value engineering is one of the approach through which we can achieve these two objectives simultaneously. Enhancing the value of running products is always a challenge as there is limited scope and flexibility to modify the current design and processes. Value engineering approach, integrated in product development cycle, brings great opportunity to upgrade the new and running products. This study reveals approach to upgrade the base engine of Maruti Alto. Upgraded engine is used in Alto 800 vehicle launched in October 2012. Improvement points were studied based on the business requirement, market competition, and legislative requirements. Based on functional improvement points, all the design parameters were studied and finalized.
Technical Paper

Vibro-Acoustic Sensitivity Analysis of Automotive Engine Mounts for NVH Refinement

2011-04-12
2011-01-0494
Engine noise is a major source of noise inside the vehicle compartment. Recently, the quietness of the occupant cabin has become an important dimension to the quality of product. OEMs are finding it challenging to meet the customer expectations for “Powerful yet quiet” attribute. Several focused studies have been made to reduce the under hood component noise in automobiles. This paper summarizes the optimization of the vibro-acoustic sensitivity (VAS) of the engine mounts of a small car engine. The contribution of each engine mount on the structure-borne noise transfer inside the cabin is the prime focus of this study. In the current analysis, the body side and engine side mounting bracket stiffness analyses are carried out to reduce the vibro-acoustic transfer. Experimental methods like conventional FRF, on-road data acquisition and physical prototyping have been used.
X