Refine Your Search

Search Results

Author:
Viewing 1 to 11 of 11
Technical Paper

Fault-Tolerant Control of Regenerative Braking System on In-Wheel Motors Driven Electric Vehicles

2020-04-14
2020-01-0994
A novel fault tolerant brake strategy for In-wheel motor driven electric vehicles based on integral sliding mode control and optimal online allocation is proposed in this paper. The braking force distribution and redistribution, which is achieved in online control allocation segment, aim at maximizing energy efficiency of the vehicle and isolating faulty actuators simultaneously. The In-wheel motor can generate both driving torque and braking torque according to different vehicle dynamic demands. In braking procedure, In-wheel motors generate electric braking torque to achieve energy regeneration. The strategy is designed to make sure that the stability of vehicle can be guaranteed which means vehicle can follow desired trajectory even if one of the driven motor has functional failure.
Journal Article

Cyber-Physical System Based Optimization Framework for Intelligent Powertrain Control

2017-03-28
2017-01-0426
The interactions between automatic controls, physics, and driver is an important step towards highly automated driving. This study investigates the dynamical interactions between human-selected driving modes, vehicle controller and physical plant parameters, to determine how to optimally adapt powertrain control to different human-like driving requirements. A cyber-physical system (CPS) based framework is proposed for co-design optimization of the physical plant parameters and controller variables for an electric powertrain, in view of vehicle’s dynamic performance, ride comfort, and energy efficiency under different driving modes. System structure, performance requirements and constraints, optimization goals and methodology are investigated. Intelligent powertrain control algorithms are synthesized for three driving modes, namely sport, eco, and normal modes, with appropriate protocol selections. The performance exploration methodology is presented.
Technical Paper

Regenerative Brake-by-Wire System Development and Hardware-In-Loop Test for Autonomous Electrified Vehicle

2017-03-28
2017-01-0401
As the essential of future driver assistance system, brake-by-wire system is capable of performing autonomous intervention to enhance vehicle safety significantly. Regenerative braking is the most effective technology of improving energy consumption of electrified vehicle. A novel brake-by-wire system scheme with integrated functions of active braking and regenerative braking, is proposed in this paper. Four pressure-difference-limit valves are added to conventional four-channel brake structure to fulfill more precise pressure modulation. Four independent isolating valves are adopted to cut off connections between brake pedal and wheel cylinders. Two stroke simulators are equipped to imitate conventional brake pedal feel. The operation principles of newly developed system are analyzed minutely according to different working modes. High fidelity models of subsystems are built in commercial software MATLAB and AMESim respectively.
Journal Article

Robust Control of Regenerative and Hydraulic Brakes for Enhancing Directional Stability of an Electric Vehicle During Straight-Line Braking

2016-04-05
2016-01-1669
Thanks to the actuation flexibility of their systems, electric vehicles with individual powertrains, including in-wheel and on-board motors, are a very popular research topic amongst various types of electrified powertrain architectures. The introduction of the individual electric powertrain provides great capacity for improvement of the vehicle’s energy efficiency and control performance. However, it also poses tremendous challenges concerning vehicle safety, due to the complex system dynamics and cooperation mechanisms between multiactuators. For an electric vehicle with independently controlled motors, because of design and manufacturing factors, the steady-state error of each motor output torque, and the flexibilities and nonlinear backlash of left and right drivetrains, can be different. This results in asymmetrical output characteristics of electric powertrain systems on the same axle.
Journal Article

Design and Performance Analysis of a Novel Regenerative Braking System for Electrified Passenger Vehicles

2016-04-05
2016-01-0438
A novel type of regenerative braking system for electric vehicles is proposed in this paper. Four pressure-difference-limit valves, two relief valves and two brake pedal simulators, are added to the layout of a conventional four-channel hydraulic modulator. The cooperation of relief valves and hydraulic pumps provides a stabilized high-pressure source. Pressure-difference-limit valves ensure that the pressure in each wheel cylinder can be modulated separately at a high precision. Besides, the functions of anti-lock braking system and electronic stability program are integrated in this regenerative braking system. The models of regenerative braking controller and vehicle dynamics are built in MATLAB/Simulink. Hydraulic brake model is built in AMESim through a parameterized and modularized method. Meanwhile, the control strategy of hydraulic brake modulation and brake force distribution are designed.
Journal Article

Comprehensive Optimization of Dynamics Performance and Energy Consumption for an Electric Vehicle via Coordinated Control of SBW and FIWMA

2016-04-05
2016-01-0457
This paper presents a coordinated controller for comprehensive optimization of vehicle dynamics performance and energy consumption for a full drive-by-wire electric vehicle, which is driven by a four in-wheel motor actuated (FIWMA) system and steered by a steer-by-wire (SBW) system. In order to coordinate the FIWMA and SBW systems, the mechanisms influencing the vehicle dynamics control performance and the energy consumption of the two systems are first derived. Second, the controllers for each subsystem are developed. For the SBW system, a triple-step control technique is implemented to decouple the yaw rate and sideslip angle controls. The FIWMA system controller is designed with a hierarchical control scheme, which is able not only to satisfy the yaw rate and sideslip angle tracking demands, but also to deal with actuation redundancy and constraints.
Journal Article

Synthesis of a Hybrid-Observer-Based Active Controller for Compensating Powetrain Backlash Nonlinearity of an Electric Vehicle during Regenerative Braking

2015-04-14
2015-01-1225
Regenerative braking provided by an electric powertrain is far different from conventional friction braking with respect to the system dynamics. During regenerative decelerations, the nonlinear powertrain backlash would excite driveline oscillations, deteriorating vehicle drivability and blended brake performance. Therefore, backlash compensation is worthwhile researching for an advanced powertrain control of electrified vehicles during regenerative deceleration. In this study, a nonlinear powertrain of an electric passenger car equipped with a central motor is modeled using hybrid system approach. The effect of powertrain backlash gap on vehicle drivability during regenerative deceleration is analyzed. To further improve an electric vehicle's drivability and blended braking performance, an active control algorithm with a hierarchical architecture is studied for powertrain backlash compensation.
Technical Paper

Robust Control of Anti-Lock Brake System for an Electric Vehicle Equipped with an Axle Motor

2014-04-01
2014-01-0140
As the main power source of the electric vehicle, the electric motor has outstanding characteristics including rapid response, accurate control and four-quadrant operation. Being introduced into the dynamic chassis control of electrified vehicles, the electric motor torque can be used not only for driving and regenerative braking during normal operating conditions, but also offers a great potential to improve the dynamic control performance of the anti-lock braking under emergency deceleration situations. This paper presents a robust control algorithm for anti-lock braking of a front-wheel-drive electric vehicle equipped with an axle motor. The hydraulic and regenerative braking system of the electric vehicle is modeled as a LPV (linear parameter varying) system. The nonlinearities of the control system are considered as uncertain parameters of a linear fractional transformation.
Technical Paper

Regenerative Braking Control Algorithm for an Electrified Vehicle Equipped with a By-Wire Brake System

2014-04-01
2014-01-1791
Regenerative braking, which can effectively improve vehicle's fuel economy by recuperating the kinetic energy during deceleration processes, has been applied in various types of electrified vehicle as one of its key technologies. To achieve high regeneration efficiency and also guarantee vehicle's brake safety, the regenerative brake should be coordinated with the mechanical brake. Therefore, the regenerative braking control performance can be significantly affected by the structure of mechanical braking system and the brake blending control strategy. By-wire brake system, which mechanically decouples the brake pedal from the hydraulic brake circuits, can make the braking force modulation more flexible. Moreover, its inherent characteristic of ‘pedal-decouple’ makes it well suited for the implementation in the cooperative regenerative braking control of electrified vehicles.
Technical Paper

Development of the Electrically-Controlled Regenerative Braking System for Electrified Passenger Vehicle

2013-04-08
2013-01-1463
As one of the key technologies of electrified vehicles, regenerative braking offers the capability of fuel saving by converting the kinetic energy of the moving vehicle into electric energy during deceleration. To coordinate the regenerative brake and friction brake, improving regeneration efficiency and guaranteeing brake performance and brake safety, development of special brake systems for electrified vehicles is needed. This paper presents a new type of electrically-controlled regenerative braking system (EABS) that has been developed for electrified passenger vehicles, which has the potential to be brought into production in China. By utilizing as much as possible mature components, integrating cooperative regeneration with ABS/TCS functions, EABS can achieve high regeneration efficiency and brake safety while providing system reliability, low development cost and development risk. This article describes the layout of the newly developed regenerative braking system.
Technical Paper

A Study on the Drivability of Hybrid Electric Vehicle

2008-06-23
2008-01-1572
This paper studies the drivability of Hybrid Electric Vehicles (HEV), and presents some methods to improve the drivability based on experiment results. First, the working principle of HEV is introduced and the hybrid powertrain is modeled. The jerk of vehicle is applied in this paper to evaluate the drivability of HEV. After studying the cause of jerk, a series of experiments of vehicle starting, state-changing, shifting and braking are designed and implemented on a parallel HEV with an automated mechanical transmission. Analysis of these experiment results shows that optimization of clutch control and cooperation of the engine and the motor on speed and torque are effective in reducing the jerk of vehicle.
X