Refine Your Search

Search Results

Viewing 1 to 14 of 14
Technical Paper

Environmental and Health Impact of Electric and Hydrogen Light Vehicles: The Case of an Italian Small City

2019-10-07
2019-24-0250
As the emission regulations get more and more stringent in the different fields of energy and environmental systems, the electric and fuel cell electric vehicles have attracted growing attention by automakers, governments, and customers. Research and development efforts have been focused on devising novel concepts, low-cost systems, and reliable electric/fuel cell powertrain. In fact, electric and fuel cell vehicles coupled with low-carbon electricity sources offer the potential for reducing greenhouse gas emissions and exposure to tailpipe emissions from personal transportation. In particular, Pedal Assisted Bicycles popularity is rising in urban areas due to their low energy consumption and environmental impact. In fact, when electrically moved, they are zero emission vehicles with very low noise emissions, as well.
Technical Paper

Multidimensional Modeling of SCR Systems via the Lattice Boltzmann Method

2019-09-09
2019-24-0048
In this paper, we deploy a novel, multidimensional approach to simulate SCR reactors across physical scales. For the first time, a full 3D Lattice Boltzmann (LB) solver is developed, able to accurately capture the fluid dynamic phenomena taking place inside SCR reactors, as well as the catalytic conversion of NOx. The influence of engine load on exhaust gas mass flow rate and catalytic converter activity is taken into account. The proposed approach is computationally light and the results prove the reliability and versatility of the LB Method for the simulation of the complex phenomena that take place inside the after-treatment devices.
Journal Article

Direct Numerical Simulation of Flow Induced Cavitation in Orifices

2013-09-08
2013-24-0005
In this paper, a multiphase Lattice Boltzmann approach is adopted to directly simulate flow conditions that lead to the inception of cavitation in an orifice. Different values of fluid surface tension are considered, which play a dramatic role in the evolution of vapour cavity, as well as different inlet velocities at the computational domain boundary. The results of the flow simulations in terms of density and velocity magnitude fields are examined, with special focus on the components of the stress tensor inside the cavitating region: a comparison with cavitation inception criteria known form literature is proposed, highlighting the good agreement between our direct numerical simulations and theoretical predictions.
Technical Paper

Lattice Boltzmann Simulation of a Cavitating Diesel Injector Nozzle

2011-09-11
2011-24-0008
The onset of cavitating conditions inside the nozzle of diesel injectors is known to play a major role on spray characteristics, especially on jet penetration and break-up. In this work, for the first time a Direct Numerical Simulation (DNS) based on the Lattice Boltzmann Method (LBM) is applied to study the fluid dynamic field inside the nozzle of a cavitating diesel injector. The formation of the cavitating region is determined via a multi-phase approach based on the Shan-Chen Equation of State and its most recent enhancements. The evolution of cavitation bubbles is followed and the characteristic numbers, i.e., Cavitation Number (CN) and discharge coefficient (Cd) are evaluated. The results obtained by the LBM simulation are compared to both numerical and experimental data present in literature.
Journal Article

Lattice Boltzmann Modeling of Diesel Spray Formation and Break-Up

2010-04-12
2010-01-1130
Spray formation and break-up are crucial phenomena for mixture formation inside diesel engines, both for combustion control and pollutant formation. Since the emission restrictions have become more and more severe in the last years, many studies have been conducted in order to improve diesel injection. Numerical simulations have proven to be reliable in producing results in a faster and cheaper way than experimental measures. The recent great progresses in computer science, then, have allowed to reach great accuracy in the simulations. In this work, a novel methodology based on Boltzmanns Kinetic Theory is applied to diesel injection. Lattice Boltzmann BGK (LBGK) provides and alternative method for solving fluid-dynamic problems and allows even superior accuracy as compared to conventional CFD. The multiphase approach used in this paper to study spray formation and primary is based on the works by Shan and Chen and their successive modifications.
Journal Article

Modeling liquid break-up through a kinetic approach

2009-09-13
2009-24-0023
Liquid atomisation is an important technical field for a wide range of engineering and industrial applications, particularly in the field of internal combustion engines. In these engines, in fact, the amount of pollutants at the engine-out interface is directly related to the quality of the combustion process, which is in turn determined by the quality of the air-fuel mixture preparation in Direct Injection (DI) engines. As a consequence numerical-experimental research is crucial to their development. Despite the significant amount of research that has been carried out on DI engines simulation, breakup modelling is still a challenge. In this paper we present a new numerical model for multiphase flows that could be particularly suited for liquid jet and droplet breakup simulation. The model is based on a Lattice Boltzmann (LB) solver coupled to a higher order finite difference treatment of the kinetic forces arising from non-ideal interactions (potential energy).
Technical Paper

Multidimensional Modelling of Gaseous Injection in Modern Direct Injection Internal Combustion Engines: Analisys of Different Fuel Injection Strategies.

2009-09-13
2009-24-0030
In the short medium term natural gas has emerged as one of the most promising energy sources for internal combustion engines because its usage leads to cleaner combustion, lower CO2 emissions, and energy source diversification. However, considering that automotive DI gas engines are rather new, only limited experience exists on the optimum configuration of the injection system and the related strategy. To facilitate the development of these applications computer models are being developed. In a previous paper, a phenomenological-3D combined approach to simulate gas injection has been presented. This model has been implemented in a modified version of the KIVA 3 V code and the simulation of a gas engine is here presented. After having validated both the injection model and the whole 3D code, an analysis of different injection strategies have been carried out in order to demonstrate that these tools are suitable for optimization of direct injection gas engines.
Technical Paper

An Integrated Experimental-Numerical Study of HSDI Diesel Injection System and Spray Dynamics

2006-04-03
2006-01-1389
This paper presents a complete numerical and experimental characterisation of the transient diesel spray of a modern 5-holes high pressure electronic controlled injector performed in a constant volume pressurised vessel. The experimental analysis has been carried out using a self-developed injection rate measuring device, a visualisation rig based on a Nd-Yag pulsed laser and a synchronized CCD camera to measure spray penetration and spray cone angles and a PDA equipment to measure droplets size and velocity. The numerical analysis has been carried out by statically coupling a 1D model of the common rail injection system to a full 3D computation of both gas and fuel spray dynamics. The 1D injection system model has been developed in the AVL HYDSIM environment and the reliability of the model is demonstrated by comparing the numerical results with the experimental data. The multidimensional numerical simulation tool is a modified version of the KIVA-3V code.
Technical Paper

Evaluation of Splash Models with High-Pressure Diesel Spray

2006-04-03
2006-01-1117
Spray impingement on walls is an important physical process in modern DI Diesel engines as it greatly influences mixture formation, combustion process and exhaust emissions. The mixture preparation is, in fact, a crucial aspect for the correct operation of the engine as it significantly affects the combustion process. In this paper three models, among the available in literature, have been selected and implemented in the KIVA-3V code. Namely, the models by O'Rourke and Amsden (OA model) [1, 2], by Bai and Gosman (BG model) [3] and by Lee et al. (LR model) [4, 5] are compared in terms of performance and capability of representing the splash phenomenon. The model capabilities are firstly tested comparing the numerical results with four sets of experimental literature data, characterized by low injection pressures. The high injection pressures of modern Diesel engines result in droplets velocities emerging from the nozzle greater than 300 m/s.
Technical Paper

Minimization of Particulate Raw Emissions from CR-Diesel Engines - A Key-Element to Limit the Increase in Complexity of Exhaust Gas After-Treatment

2005-04-11
2005-01-1235
The present paper describes a study of the basic parameters, which govern particulate (soot) formation within the combustion chamber of a small displacement (1.3 liter) turbocharged European CR-diesel engine. The main tools used for the study are a real fired engine, a numerical virtual engine and a special high ambient pressure vessel for injector spray visualization. The paper describes an improved soot formation model implemented in the virtual engine setup. A comparison is presented between measured and computed combustion data at 8 different load points. The paper concludes with a discussion of the means, which can be used to minimize the particulate matter formation in the design phase of both the combustion layout and the fuel injector atomizer as well as in the design of the injection control strategies.
Technical Paper

Study of the Impact on the Spray Shape Stability and the Combustion Process of Supply Pressure Fluctuations in CR-Diesel Injectors

2004-03-08
2004-01-0023
The paper presents a study of the influence of fuel pressure supply fluctuations on the upstream side of the fuel injector atomizer. The study is performed over a wide range of pressures (70 to 130 Mpa) with two different common-rail (CR) high-pressure fuel injectors. The common atomizer is a VCO-type equipped with conically shaped atomizer bores. With the injector tip (nozzle) mounted in a counter-pressure vessel the pressure fluctuations in the fuel-rail and in the injector body are recorded simultaneously with stroboscopic Schlieren-visualization of the time-resolved spray behavior. It is demonstrated that not only the instantaneous mass flow is affected. As a function of rail-pressure, pulse-width and injection strategy the pressure fluctuations change the spray hard-core structure and its break-up behavior.
Technical Paper

Study of the Impact on the Combustion Process of Injector Nozzle Layout creating Enhanced Secondary Spray Break-up

2003-03-03
2003-01-0706
The paper presents a study of a key-element in the mixture preparation process. A typical common-rail (CR) high-pressure fuel injector was fitted with a prototype injector nozzle with atomizer bores of a particular conical layout. It is demonstrated within certain layout limits, that a considerable enhancement can be obtained for the secondary break-up of the hard-core fluid sprays produced by the nozzle. The impact on the combustion process is examined in terms of pressure and heat release as well as of the engine-out pollutant emission. The results are compared to those of an earlier developed CR high-pressure injector nozzle. The atomization behavior of the prototype nozzle is illustrated through experimental results in terms of engine-out emissions from a 1.3-liter turbo-charged passenger car diesel engine. The detailed spray behavior is visualized on a component test rig by use of specially developed optical visualization techniques.
Technical Paper

Combustion and Spray Simulation of a DI Turbocharged Diesel Engine

2002-10-21
2002-01-2776
The recent innovations on automotive Diesel engines require significant research efforts. The new generation of fully electronically controlled injection systems have opened new ways to reduce emissions and improve the efficiency of the engine. The free mapping of injection law together with the enhanced injection pressures favor, in fact, the optimization of mixture formation. In this field, the 3D simulation is playing a substantial role to support the design of combustion chamber. This paper presents a computational model to simulate the multi-injection process, the mixture formation and the combustion of DI diesel engines with high-pressure injection systems. The main code is a modified version of the KIVA 3V and the modifications presented in this work are a high pressure break up model and a multi component evaporation model. The code has been validated through experimental data on a 4-cylinder, 1910 cc, DI turbocharged Diesel engine (Fiat 1.9 JTD).
Technical Paper

Aerodynamic Investigation of a Scooter in the University of Perugia Wind Tunnel Facility

2002-03-04
2002-01-0254
Two wheels vehicles for city use are common in Europe and particularly in Italy. In the last ten years a new concept of motorcycle has been introduced on the market: maxi-scooters. Maxi-scooters represent an evolution of the small size engine scooters (from 50 to 125 cc) that were created in the 50s for city use. In the last decade the market turned to bigger swept volumes, such as 250 and 500 cc. This category of motorcycles is aimed to a richer and more adult market, which needs a pleasant design, riding comfort and stability at higher speed. On the other hand, such vehicles for city use are passing a critical moment in terms of development of the engines, because of the stricter limits imposed by the environmental regulations and for the consequent and significant effects on performance.
X