Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Gray Box Diesel Engine Soot Emission Modeling Based on Two-Color Spectroscopy Measurements

2011-09-11
2011-24-0205
Modeling the soot emissions of a Diesel engine is a challenge. Although it was part of many works before, it is still not a solved issue and has a substantial potential for improvement. A major problem is the presence of two competing effects during combustion, soot formation and soot oxidation, whereas only the cumulative difference of these effects can be measured in the exhaust. There is a wide consensus that it is sensible to design crank angle resolved models for both effects. Indeed, many authors propose crank angle based soot models which are mostly based on detailed first principles based structures, e.g. spray models, engine process calculations etc. Although these models are appealing from a theoretical point of view, they are all lacking of the required measurement information to validate all the complex model parts. Finally, most parts of the model remain at their assumed values and only a few parameters are used for calibration.
Technical Paper

Measurement of Transient PM Emissions in Diesel Engine

2011-09-11
2011-24-0197
Transient emission peaks have become an important fraction of the total emissions during the standardized test cycles for passenger car Diesel engines. To this end this paper is concerned with the challenge of measuring emissions during transients. The importance of this topic is increasing due to strict regulation on pollutant emissions. Hence, suitably accurate and fast measurement devices for PM emission detection are required. Thus, we present a comparison between different measurement techniques for Particulate matter (PM) emissions from a Diesel engine, in particular during transients. The compared equipments include AVL Micro soot sensor, AVL Opacimeter, Differential mobility spectrometer and Laser induced incandescence. The goal of this paper is to reveal the most accurate device in the sense of sensitivity and dynamics for fast measurements of PM from a Diesel engine.
Journal Article

Simplified Calculation of Chemical Equilibrium and Thermodynamic Properties for Diesel Combustion

2011-09-11
2011-24-0020
Computation of combustion, in particular of emissions over crank angle, relies on chemical oriented models. In some cases, chemical equilibrium can be assumed, as chemical reaction time scales tend to be fast compared to the crank rotation, so the rather complex reaction kinetics can be neglected. For engine process calculation based on the measured cylinder pressure chemical equilibrium concentrations are needed for every crank angle or calculation time step. On the one hand the equilibrium concentrations are necessary for estimating the thermodynamic properties of the working gas (internal energy and specific gas constant) which are needed for deriving the energy release (burn rate) and on the other hand the obtained concentrations are inputs for crank angle based soot and nitric oxygen emission models which depends also on the engine process calculation results.
Technical Paper

Control Oriented Crank Angle Based Analysis of Soot Dynamics During Diesel Combustion

2010-10-25
2010-01-2105
This paper presents a detailed optical and thermodynamic analysis of effects which influences the soot formation and oxidation process during Diesel combustion. To measure the actual soot concentration over crank angle an optical sensor was installed on the engine. In combination with a thermodynamic engine process calculation, based on the measured cylinder pressure, several important effects are analyzed and described in detail. The main focus of the paper is to produce knowledge on how soot dynamics is influenced by changed engine control unit (ECU) calibration parameters. A modern 4 cylinder production car Diesel engine was used for the studies, which offers a lot of opportunities to influence combustion by varying injection timing and air path ECU parameters. As a consequence discussion is done on how the analyzed effects are treated by published 0-dimensional simulation models with focus on later control and optimization application.
Journal Article

Hybrid 2-Zone Diesel Combustion Model for NO Formation

2009-09-13
2009-24-0135
This paper presents a methodology which is able to calculate emissions over crank angle (CA) using the measured cylinder pressure. The models are based on a 2-zone Diesel combustion process calculation combined with data based methods to fulfill the objective of a wide operating range, for a later possible use in transients — differently from the standard methods, which usually work accurate only in a small range. The resulting hybrid or grey box oriented model structure offers many advantages when purely physical modeling is too complicated and the combination with data based methods allow to obtain better results. The workflow of CA based emission models on the basis of a 2-zone calculation is presented. The focus of this paper is to explain the development process of a nitric oxide (NO) formation model, which is accurate over a wide operating range. For future similar data based particulate matter (PM) models the shown workflow could be used too.
X