Refine Your Search

Search Results

Author:
Viewing 1 to 5 of 5
Journal Article

Characteristics of High Pressure Jets for Direct Injection Gas Engine

2013-04-08
2013-01-1619
The direct injection (DI) natural gas engine is considered as one of the promising technologies to achieve the continuing goals of the higher efficiency and reduced emissions for internal combustion engines. Shock wave phenomena can easily occur near the nozzle exit when high pressure gaseous fuel is injected directly into the engine cylinder. In the present study, high pressure gas issuing from a prototype gas injector was experimentally studied using planar laser-induced fluorescence (PLIF) technique. Acetone was selected as a fuel tracer. The effects of injection pressures on the flow structure and turbulent mixing were investigated based on a series of high resolution images. The jet macroscopic structures, such as jet penetration, cone angle and jet volume, are analyzed under different injection pressures. Results show that barrel shock waves can significantly influence the jet flow structure and turbulent mixing.
Technical Paper

An Experimental Study on High Pressure Pulsed Jets for DI Gas Engine Using Planar Laser-Induced Fluorescence

2012-09-10
2012-01-1655
Compressed natural gas direct-injection (CNG-DI) engines based on diesel cycle combustion system with pilot ignition have ability to achieve high thermal efficiency and low emissions. Generally, underexpanded jets can be formed when the high pressure natural gas is injected into the combustion chamber. In such conditions, shock wave phenomena are the typical behaviors of the jet, which can significantly influence the downstream flow structure and turbulent mixing. In the present study, the characteristics of high-pressure transient jets were investigated using planar laser-induced fluorescence (PLIF) of acetone as a fuel tracer. The evolution of the pulsed jet shows that there are three typical jet flow patterns (subsonic, moderately underexpanded, and highly underexpanded) during the injection. The full injection process of high-pressure pulsed jets is well described with the help of these shock wave structures.
Technical Paper

Experimental Study on Structure and Mixing of Low-Pressure Gas Jet Using Tracer-Based PLIF Technique

2011-09-11
2011-24-0039
Natural gas has been considered as one promising alternative fuel for internal combustion (IC) engines to meet strict engine emission regulations and reduce the dependence on petroleum oil. Although compressed natural gas (CNG) intake manifold injection has been successfully applied into spark ignition (SI) engines in the past decade, natural gas direct injection compression ignition (DICI) engine with new injection system is being pursued to improve engine performance. Gas jet behaves significantly different from liquid fuels, so the better understanding of the effects of gas jet on fuel distribution and mixing process is essential for combustion and emission optimization. The present work is aimed to gain further insight into the characteristics of low pressure gas jet. An experimental gas jet investigation has been successfully conducted using tracer-based planar laser-induced fluorescence (PLIF) technique. For safety reason, nitrogen (N₂) was instead of CNG in this study.
Technical Paper

Spray and Combustion Characteristics of HCCI Engine Using DME/Diesel Blended Fuel by Port-Injection

2010-05-05
2010-01-1485
Homogeneous charge compression ignition (HCCI) is a new combustion concept which achieves high efficiency, low nitrogen oxides (NOx), and particulates matter (PM) emissions. In order to realize the HCCI combustion, a homogenous mixture preparation plays an important role in the HCCI engine. However, it is well known that diesel fuel is very difficult to achieve a uniform mixture distribution within the engine cylinder because of its high viscosity and poor fuel vaporization. In order to eliminate these problems, the low viscosity and high volatility Dimethyl ether (DME) was added into diesel fuel to enhance the spray and atomization. The spray tip penetration and spray cone angle of DME/diesel-blended fuel has been examined by using direct photography technology. Measurements were achieved by using spray images taken with a high-resolution CCD camera synchronized with strobe light.
Technical Paper

An Experimental Study on Steady Flash Boiling Spray Characteristics of DME/Diesel Blended fuel

2010-04-12
2010-01-0879
Homogeneous charge compression ignition (HCCI) is a new combustion concept, which achieves high thermal efficiency and ultra-low emissions. In order to realize the HCCI combustion, a homogenous mixture preparation plays an important role in the HCCI engine concept. However, there are some problems for conventional diesel fuel to achieve a uniform mixture distribution in the cylinder because of its high viscosity and low volatility. This paper describes the effects of the DME addition on the spray behavior and atomization characteristics of diesel fuel. Pure diesel fuel, pure DME fuel and DME/diesel blended fuels with DME mass fraction of 25% and 50% were used to evaluate the effects of the DME concentration on the macroscopic and microscopic structure of the steady spray.
X