Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Journal Article

Towards an Open Source Framework for Small Engine Controls Development

2014-11-11
2014-32-0070
The paper describes the components of an envisioned open source framework that supports several stages in the model-based development of two- and three-wheelers software controls. The proposed solution supports the runtime execution on an OSEK-compatible [8] real-time operating system for multicore platforms. The framework consists of a modeling and simulation tool (including hierarchical state machines) and a code generator for the development of the functional model of controls and the definition of their task implementation; an OSEK/AUTOSAR operating system and device driver stack; OS and I/O configuration tools. The platform has been released open-source under an industry-friendly license. Our framework is currently in use for the development of innovative two-three wheelers control systems at Piaggio. In this paper we describe the experience matured in the application development, the benefits and current limitations of the approach.
Technical Paper

Development of A Control-Oriented Model of Engine, Transmission and Vehicle Systems for Motor Scooter HIL Testing

2009-06-15
2009-01-1779
This paper describes the development of a mathematical model which allows the simulation of the Internal Combustion Engine (ICE), the transmission and the vehicle dynamics of a motor vehicle equipped with a Continuously Variable Transmission (CVT) system. The aim of this work is to realize a simulation tool that is able to evaluate the performance and the operating conditions of the ICE, once it is installed on a given vehicle. Since the simulation has to be run in real-time for Hardware In the Loop (HIL) applications, a zero-dimensional (filling and emptying) model is used for modeling the cylinder thermodynamics and the intake and exhaust manifolds. The combustion is modeled by means of single zone model, with the fuel burning rate described by Wiebe functions. The gas proprieties depend on temperature and chemical composition of the gas, which are evaluated at each crank-angle.
X