Refine Your Search

Search Results

Author:
Viewing 1 to 3 of 3
Journal Article

Validation of a Thermal-Electric Li-Ion Battery Model

2012-04-16
2012-01-0332
Commercial vehicle manufacturers are investing substantial resources into the development and testing of advanced battery systems for the next generation of hybrid and electric vehicles. Likewise the US army is investing in lithium ion battery research for power and energy applications including SLI (starter, lights, and ignition), silent watch, unmanned vehicles, and directed energy weapons. A major design constraint is the management of the heat generated by Li-Ion battery systems. Extreme battery temperatures impact both the performance and reliability of the battery system as well as the overall operation of the vehicle. Analysis tools that can address vehicle and battery thermal management issues are needed to accelerate this development. To meet that need, a coupled thermal-electric model for battery cells and packs has been developed and implemented into the existing thermal modeling software RadTherm.
Technical Paper

Development of a Temperature-Dependent Li-ion Battery Thermal Model

2012-04-16
2012-01-0117
The performance of lithium-ion batteries, in terms of capacity, safety, or life, is strongly dependent on operating temperature. Users and suppliers of Li-ion cells and packs must provide thermal management systems that keep the batteries operating within an acceptable temperature envelope to ensure reliable performance. The design of these systems depends on validated thermal-electrical models of battery behavior when subjected to various driving cycles and environmental conditions. A number of battery models have been developed for use in computer-aided engineering design studies, ranging in complexity from simple equivalent circuit models to multi-scale, multi-physics simulations of electro-chemical processes. One model that accomplishes a favorable compromise between simulation complexity and representative physics employs an empirical approach to capture discharge behavior as a function of current density and the depth-of-discharge (or charge depletion) on an electrode.
Technical Paper

Development of Transient Simulation Methodologies for Underhood Hot Spot Analysis of a Truck

2011-04-12
2011-01-0651
This paper presents the efforts done by Volvo 3P, through a partnership with ThermoAnalytics Inc, to develop transient thermal simulation methodologies of the under hood of a truck. The verification process for the hot spots analysis currently in use at Volvo 3P is described and the key transient situations for the hot spots analysis are identified: hot shutdown, DPF regeneration and long drive cycle, are currently only covered by physical testing late in the project, contrary to steady-state operating conditions that are already managed through simulations in the early stage of the development phase. The goal of this work is to develop simulation methodologies for these transient situations which are likely to increase the efficiency of the verification process. The key issues to be satisfied are to minimize the model development and the simulation times while achieving an acceptable accuracy level.
X