Refine Your Search

Search Results

Author:
Viewing 1 to 3 of 3
Technical Paper

Design & Evaluation of an Exhaust Filtration Analysis (EFA) System

2014-04-01
2014-01-1558
The Diesel Exhaust Filtration Analysis System (DEFA) developed at the University of Wisconsin Madison was modified to perform fundamental filtration experiments using particulate matter (PM) generated by a spark-ignition direct-injection (SIDI) engine fueled with gasoline. The newly modified system, termed the Exhaust Filtration Analysis (EFA) system, enables small-scale fundamental studies of wall-flow filtration processes. A scanning mobility particle sizer (SMPS) was used to characterize running conditions with unique particle size distributions (PSDs). The SMPS and an engine exhaust particle sizer (EEPS) were used to simultaneously measure the PSD downstream of the EFA and the real-time particulate emissions from the SIDI engine, to determine the evolution of filtration efficiency during filter loading. Corrections were developed for each running condition to compare measured PSDs between the EEPS and the SMPS in the raw, as well as, filtered exhaust stream.
Technical Paper

Detailed Morphological Properties of Nanoparticles from Gasoline Direct Injection Engine Combustion of Ethanol Blends

2013-09-08
2013-24-0185
Detailed properties of particulate matter (PM) emissions from a gasoline direct injection (GDI) engine were analyzed in terms of size, morphology, and nanostructures, as gasoline and its ethanol blend E20 were used as a fuel. PM emissions were sampled from a 0.55L single-cylinder GDI engine by means of a scanning mobility particle sizer (SMPS) for size measurements and a self-designed thermophoretic sampling device for the subsequent analyses of size, morphology and nanostructures using a transmission electron microscope (TEM). The particle sizes were evaluated with variations of air-fuel equivalence ratio and fuel injection timing. The most important result from the SMPS measurements was that the number of nucleation-mode nanoparticles (particularly those smaller than 10 - 15 nm) increased significantly as the fuel injection timing was advanced to the end-of-injection angle of 310° bTDC.
Technical Paper

Effect of Equivalence Ratio on the Particulate Emissions from a Spark-Ignited, Direct-Injected Gasoline Engine

2013-04-08
2013-01-1560
The effect of equivalence ratio on the particulate size distribution (PSD) in a spark-ignited, direct-injected (SIDI) engine was investigated. A single-cylinder, four-stroke, spark-ignited direct-injection engine fueled with certification gasoline was used for the measurements. The engine was operated with early injection during the intake stroke. Equivalence ratio was swept over the range where stable combustion was achieved. Throughout this range combustion phasing was held constant. Particle size distributions were measured as a function of equivalence ratio. The data show the sensitivity of both engine-out particle number and particle size to global equivalence ratio. As equivalence ratio was increased a larger fraction of particles were due to agglomerates with diameters ≻ 100 nm. For decreasing equivalence ratio smaller particles dominate the distribution. The total particle number and mass increased non-linearly with increasing equivalence ratio.
X